University of Tasmania
Browse
Conditions for the localisation published version.pdf (3.01 MB)

Conditions for the localization of plastic deformation in temperature sensitive visco-plastic materials

Download (3.01 MB)
journal contribution
posted on 2023-05-18, 20:29 authored by Paesold, MK, Andrew BassomAndrew Bassom, Regenauer-Lieb, K, Veveakis, M
We study the onset of localisation of plastic deformation for a class of materials that exhibit both temperature and rate sensitivity. The onset of localisation is determined via an energy bifurcation criterion, defined by the postulate that viscoplastic materials admit a critical (mechanical) energy input above which deformation becomes unstable and plastic localisation ensues. In analogy to the classical concepts of mechanics, the conditions for the onset of localisation in temperature-sensitive viscoplastic materials are reached at a critical stress. However, it is shown that in viscoplastic materials a material bifurcation occurs when the heat supply through mechanical work surpasses the diffusion capabilities of the material. This transition from near-isothermal stable evolution to near-adiabatic thermal runaway is the wellknown concept of shear heating. Here, it is generalised and the correspondence between this runaway instability and the localisation of plastic deformation in solid mechanics is detailed. The obtained phase space controlling the localisation is shown to govern the evolution of the system in the postyield regime. These results suggest that the energy balance essentially drives the evolution of the plastic deformation and therefore constitutes a physics-based hardening law for thermoviscoplastic materials.

History

Publication title

Journal of Mechanics of Materials and Structures

Volume

11

Pagination

113-136

ISSN

1559-3959

Department/School

School of Natural Sciences

Publisher

Mathematical Sciences Publishers

Place of publication

United States

Rights statement

Copyright 2016 the authors

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the mathematical sciences

Usage metrics

    University Of Tasmania

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC