University of Tasmania
Browse

File(s) under permanent embargo

Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion

journal contribution
posted on 2023-05-18, 19:52 authored by Aitken, ARA, Jason RobertsJason Roberts, Tasman van OmmenTasman van Ommen, Young, DA, Golledge, NR, Greenbaum, JS, Blankenship, DD, Siegert, MJ
Climate variations cause ice sheets to retreat and advance, raising or lowering sea level by metres to decametres. The basic relationship is unambiguous, but the timing, magnitude and sources of sea-level change remain unclear; in particular, the contribution of the East Antarctic Ice Sheet (EAIS) is ill defined, restricting our appreciation of potential future change. Several lines of evidence suggest possible collapse of the Totten Glacier into interior basins during past warm periods, most notably the Pliocene epoch, causing several metres of sea-level rise. However, the structure and long-term evolution of the ice sheet in this region have been understood insufficiently to constrain past ice-sheet extents. Here we show that deep ice-sheet erosion—enough to expose basement rocks—has occurred in two regions: the head of the Totten Glacier, within 150 kilometres of today’s grounding line; and deep within the Sabrina Subglacial Basin, 350–550 kilometres from this grounding line. Our results, based on ICECAP aerogeophysical data, demarcate the marginal zones of two distinct quasi-stable EAIS configurations, corresponding to the ‘modern-scale’ ice sheet (with a marginal zone near the present ice-sheet margin) and the retreated ice sheet (with the marginal zone located far inland). The transitional region of 200–250 kilometres in width is less eroded, suggesting shorter-lived exposure to eroding conditions during repeated retreat–advance events, which are probably driven by ocean-forced instabilities. Representative ice-sheet models indicate that the global sea-level increase resulting from retreat in this sector can be up to 0.9 metres in the modern-scale configuration, and exceeds 2 metres in the retreated configuration.

History

Publication title

Nature

Volume

533

Issue

7603

Pagination

385-389

ISSN

0028-0836

Department/School

Institute for Marine and Antarctic Studies

Publisher

Nature Publishing Group

Place of publication

Macmillan Building, 4 Crinan St, London, England, N1 9Xw

Rights statement

© 2016 Macmillan Publishers

Repository Status

  • Restricted

Socio-economic Objectives

Effects of climate change on Antarctic and sub-Antarctic environments (excl. social impacts)

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC