University of Tasmania
Browse

File(s) under permanent embargo

Transient hybridization, not homoploid hybrid speciation, between ancient and deeply divergent conifers

journal contribution
posted on 2023-05-18, 17:15 authored by Worth, JRP, Larcombe, MJ, Sakaguchi, S, James MarthickJames Marthick, David BowmanDavid Bowman, Ito, M, Gregory JordanGregory Jordan

Premise of the study: Homoploid hybrid speciation is receiving growing attention due the increasing recognition of its role in speciation. We investigate if individuals intermediate in morphology between the two species of the conifer genus Athrotaxis represent a homoploid hybrid species, A. laxifolia, or are spontaneous F1 hybrids.

Methods: A total of 1055 individuals of Athrotaxis cupressoides and A. selaginoides, morphologically intermediate individuals, and two putative hybrid swarms were sampled across the range of the genus and genotyped with 13 microsatellites. We used simulations to test the power of our data to identify the pure species, F1s, F2s, and backcross generations.

Key results: We found that Athrotaxis cupressoides and A. selaginoides are likely the most divergent congeneric conifers known, but the intermediates are F1 hybrids, sharing one allele each from A. cupressoides and A. selaginoides at six loci with completely species specific alleles. The hybrid swarms contain wide genetic variation with stronger affinities to the locally dominant species, A. selaginoides and A. selaginoides backcrosses outnumbering A. cupressoides backcrosses. In addition, we observed evidence for isolated advanced generation backcrosses within the range of the pure species.

Conclusions: We conclude that, even though they can be large and long-lived, Athrotaxis hybrid swarms are on a trajectory of decline and will eventually be reabsorbed by the parental species. However, this process may take millennia and fossil evidence suggests that such events have occurred repeatedly since the early Quaternary. Given this timeline, our study highlights the many obstacles to homoploid hybrid speciation.

Funding

Australian Research Council

History

Publication title

American Journal of Botany

Volume

103

Pagination

246-259

ISSN

0002-9122

Department/School

School of Natural Sciences

Publisher

Botanical Soc Amer Inc

Place of publication

Ohio State Univ-Dept Botany, 1735 Neil Ave, Columbus, USA, Oh, 43210

Rights statement

Copyright 2016 Botanical Society of America

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the environmental sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC