University of Tasmania
Browse

File(s) under permanent embargo

The release and uptake of metals from potential biofilm inhibition products during spiny lobster (Sagmariasus verreauxi, H. Milne Edwards 1851) culture

journal contribution
posted on 2023-05-18, 16:45 authored by Gregory SmithGregory Smith, Poole, AJ, King, PC, Battaglene, S, Quinn FitzgibbonQuinn Fitzgibbon, de Nys, R
Zinc (Zn) and copper (Cu) are strong inhibitors of bacterial biofilms in aqueous solutions, but are known toxins of crustaceans. A new metal application method; cold-sprayed metal embedment, known to modulate metal release, was tested for its applications in crustacean larval culture systems. Cold-spray technology allows metal particles to bond to plastics, while modulating metal ion release and biocide activity to the substrate boundary. In this study, Eastern spiny lobster (Sagmariasus verreauxi) larvae (phyllosoma) were cultured in the presence of cold-sprayed Zn and Cu metal surfaces. Metal loss was monitored gravimetrically on embedded surfaces, assessment of water ion concentrations and analysis of phyllosoma body content were undertaken. Phyllosoma moulting, deformity and mortality patterns were monitored. Cold-sprayed Zn- and Cu-embedded surfaces were depleted with losses of 0.69% and 31.2% noted respectively. Culture water concentrations of these metals were elevated and accumulation by phyllosoma occurred. Water Zn concentrations of 18.5 μg L−1 were associated with chronic eyestalk moult deformities; the first report of Zn causing a non-lethal moult deformity in crustacean larvae. The Cu surface lost a third of its metal mass with a water concentration of 40 μg L−1 causing acute toxicity and localization of composite granules in the midgut gland. Cu associated mortality was noted by Day 2 of culture with a LD 50 experienced by Day 9. Future work on the use of bioactive metals in aquaculture systems will focus on a range of different metal alloys, and improved modulation of ion release mechanisms through increased particle embedment depth and separation.

Funding

Australian Research Council

UTAS Nexus Aquasciences Pty Ltd

History

Publication title

Aquaculture Research

Volume

48

Pagination

608-617

ISSN

1355-557X

Department/School

Institute for Marine and Antarctic Studies

Publisher

Blackwell Publishing Ltd

Place of publication

9600 Garsington Rd, Oxford, England, Oxon, Ox4 2Dg

Rights statement

© 2015 John Wiley & Sons Ltd

Repository Status

  • Restricted

Socio-economic Objectives

Fisheries - aquaculture not elsewhere classified

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC