University of Tasmania
Browse

File(s) under permanent embargo

Planetary-geometric constraints on isopycnal slope in the Southern Ocean

journal contribution
posted on 2023-05-18, 14:53 authored by Jones, DC, Ito, T, Birner, T, Andreas KlockerAndreas Klocker, Munday, D
On planetary scales, surface wind stress and differential buoyancy forcing act together to produce isopycnal surfaces that are relatively flat in the tropics/subtropics and steep near the poles, where they tend to outcrop. Tilted isopycnals in a rapidly rotating fluid are subject to baroclinic instability. The turbulent, mesoscale eddies generated by this instability have a tendency to homogenize potential vorticity (PV) along density surfaces. In the Southern Ocean (SO), the tilt of isopycnals is largely maintained by competition between the steepening effect of surface forcing and the flattening effect of turbulent, spatially inhomogeneous eddy fluxes of PV. Here quasigeostrophic theory is used to investigate the influence of a planetary–geometric constraint on the equilibrium slope of tilted density/buoyancy surfaces in the SO. If the meridional gradients of relative vorticity and PV are small relative to β, then quasigeostrophic theory predicts ds/dz = β/f0 = cot(ϕ0)/a, or equivalently r ≡ |∂zs/(β/f0)| = 1, where f is the Coriolis parameter, β is the meridional gradient of f, s is the isopycnal slope, ϕ0 is a reference latitude, a is the planetary radius, and r is the depth-averaged criticality parameter. It is found that the strict r = 1 condition holds over specific averaging volumes in a large-scale climatology. A weaker r = O(1) condition for depth-averaged quantities is generally satisfied away from large bathymetric features. The r = O(1) constraint is employed to derive a depth scale to characterize large-scale interior stratification, and an idealized sector model is used to test the sensitivity of this relationship to surface wind forcing. Finally, the possible implications for eddy flux parameterization and for the sensitivity of SO circulation/stratification to changes in forcing are discussed.

History

Publication title

Journal of Physical Oceanography

Volume

45

Issue

12

Pagination

2991-3004

ISSN

0022-3670

Department/School

Institute for Marine and Antarctic Studies

Publisher

Amer Meteorological Soc

Place of publication

45 Beacon St, Boston, USA, Ma, 02108-3693

Rights statement

Copyright? 2015 American Meteorological Society

Repository Status

  • Restricted

Socio-economic Objectives

Understanding climate change not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC