University of Tasmania
Browse

File(s) under permanent embargo

Suppression and restoration of primordial germ cell marker gene expression in channel catfish, Ictalurus punctatus, using knockdown constructs regulated by copper transport protein gene promoters: potential for reversible transgenic sterilization

journal contribution
posted on 2023-05-18, 13:01 authored by Su, B, Shang, M, Grewe, PM, Jawahar PATIL, Peatman, E, Perera, DA, Cheng, Q, Li, C, Weng, C-C, Li, P, Liu, Z, Dunham, RA
Complementary DNA overexpression and short hairpin RNA interference approaches were evaluated for decreasing expression of primordial germ cell (PGC) marker genes and thereby sterilizing channel catfish, Ictalurus punctatus, by delivering knockdown constructs driven by a constitutive promoter from yeast and a copper transport protein gene into fish embryos by electroporation. Two PGC marker genes, nanos and dead end, were the target knockdown genes, and their expressions, along with that of an off-target gene, vasa, were evaluated temporally using real-time polymerase chain reaction. Copper sulfate was evaluated as a repressor compound. Some of the constructs knocked down PGC marker gene expression, and some of the constructs were partially repressed by application of 0.1-ppm copper sulfate. When the rate of sexual maturity was compared for three-year-old broodfish that had been exposed to the sterilizing constructs during embryologic development and controls that had not been exposed, several treatments had reduced sexual maturity for the exposed fish. Of two promoter systems evaluated, the one which had been designed to be less sensitive to copper generally was more effective at achieving sterilization and more responsive to repression. Knockdown constructs based on 3′ nanos short hairpin RNA interference appeared to result in the best repression and restoration of normal sexual maturity. We conclude that these copper-based systems exhibited good potential for repressible transgenic sterilization. Optimization of this system could allow environmentally safe application of transgenic technology and might be applicable to other applications for aquatic organisms.

History

Publication title

Theriogenology

Volume

84

Issue

9

Pagination

1499-1512

ISSN

0093-691X

Department/School

Institute for Marine and Antarctic Studies

Publisher

Elsevier Science Inc

Place of publication

360 Park Ave South, New York, USA, Ny, 10010-1710

Rights statement

Copyright 2015 Elsevier Inc.

Repository Status

  • Restricted

Socio-economic Objectives

Aquaculture fin fish (excl. tuna)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC