eCite Digital Repository

Hypothermia protects human neurons


Antonic, A and Dottori, M and Leung, J and Sidon, K and Batchelor, PE and Wilson, W and Macleod, MR and Howells, DW, Hypothermia protects human neurons, International Journal of Stroke, 9, (5) pp. 544-552. ISSN 1747-4930 (2014) [Refereed Article]

DOI: doi:10.1111/ijs.12224


Background and Aims: Hypothermia provides neuroprotection after cardiac arrest, hypoxic-ischemic encephalopathy, and in animal models of ischemic stroke. However, as drug development for stroke has been beset by translational failure, we sought additional evidence that hypothermia protects human neurons against ischemic injury.

Methods: Human embryonic stem cells were cultured and differentiated to provide a source of neurons expressing β III tubulin, microtubule-associated protein 2, and the Neuronal Nuclei antigen. Oxygen deprivation, oxygen-glucose deprivation, and H2O2-induced oxidative stress were used to induce relevant injury.

Results: Hypothermia to 33C protected these human neurons against H2O2-induced oxidative stress reducing lactate dehydrogenase release and Terminal deoxynucleotidyl transferase dUTP nick end labeling-staining by 53% (P≤00001; 95% confidence interval 348-7104) and 42% (P≤00001; 95% confidence interval 275-566), respectively, after 24h in culture. Hypothermia provided similar protection against oxygen-glucose deprivation (42%, P≤0001, 95% confidence interval 183-713 and 26%, P≤0001; 95% confidence interval 124-522, respectively) but provided no protection against oxygen deprivation alone. Protection (21%) persisted against H2O2-induced oxidative stress even when hypothermia was initiated six-hours after onset of injury (P≤005; 95% confidence interval 057-431).

Conclusion: We conclude that hypothermia protects stem cell-derived human neurons against insults relevant to stroke over a clinically relevant time frame. Protection against H2O2-induced injury and combined oxygen and glucose deprivation but not against oxygen deprivation alone suggests an interaction in which protection benefits from reduction in available glucose under some but not all circumstances.

Item Details

Item Type:Refereed Article
Keywords:Brain; Hypothermia; Ischemic stroke; Neuroprotection; Stem cells; Treatment
Research Division:Biomedical and Clinical Sciences
Research Group:Neurosciences
Research Field:Neurosciences not elsewhere classified
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the health sciences
UTAS Author:Howells, DW (Professor David Howells)
ID Code:100727
Year Published:2014
Web of Science® Times Cited:18
Deposited By:Medicine
Deposited On:2015-05-27
Last Modified:2017-11-06

Repository Staff Only: item control page