University of Tasmania
Browse
2009_Craven_etal_Properties_of_marine_ice_layer_under_Amery_ice_shelf.pdf (454.33 kB)

Properties of a marine ice layer under the Amery Ice Shelf, East Antarctica

Download (454.33 kB)
journal contribution
posted on 2023-05-18, 10:16 authored by Craven, M, Ian AllisonIan Allison, Fricker, HA, Roland WarnerRoland Warner
The Amery Ice Shelf, East Antarctica, undergoes high basal melt rates near the southern limit of its grounding line where 80% of the ice melts within 240 km of becoming afloat. A considerable portion of this later refreezes downstream as marine ice. This produces a marine ice layer up to 200 m thick in the northwest sector of the ice shelf concentrated in a pair of longitudinal bands that extend some 200 km all the way to the calving front. We drilled through the eastern marine ice band at two locations 70 km apart on the same flowline. We determine an average accretion rate of marine ice of 1.1 +/- 0.2 m a(-1), at a reference density of 920 kg m(-3) between borehole sites, and infer a similar average rate of 1.3 +/- 0.2 m a(-1) upstream. The deeper marine ice was permeable enough that a hydraulic connection was made whilst the drill was still 70-100 m above the ice-shelf base. Below this marine close-off depth, borehole video imagery showed permeable ice with water-filled cavities and individual ice platelets fused together, while the upper marine ice was impermeable with small brine-cell inclusions. We infer that the uppermost portion of the permeable ice becomes impermeable with the passage of time and as more marine ice is accreted on the base of the shelf. We estimate an average closure rate of 0.3 m a(-1) between the borehole sites; upstream the average closure rate is faster at 0.9 m a(-1). We estimate an average porosity of the total marine ice layer of 14-20%, such that the deeper ice must have even higher values. High permeability implies that sea water can move relatively freely through the material, and we propose that where such marine ice exists this renders deep parts of the ice shelf particularly vulnerable to changes in ocean properties.

History

Publication title

Journal of Glaciology

Volume

55

Issue

192

Pagination

717-728

ISSN

0022-1430

Department/School

Institute for Marine and Antarctic Studies

Publisher

Int Glaciol Soc

Place of publication

Lensfield Rd, Cambridge, England, Cb2 1Er

Rights statement

Copyright 2009 International Glaciological Society

Repository Status

  • Open

Socio-economic Objectives

Understanding climate change not elsewhere classified

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC