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Abstract Sea level varies on a range of time scales from tidal to decadal and centennial change. To date,
little attention has been focussed on the prediction of interannual sea level anomalies. Here we demonstrate
that forecasts of coastal sea level anomalies from the dynamical Predictive Ocean Atmosphere Model for
Australia (POAMA) have significant skill throughout the equatorial Pacific and along the eastern boundaries
of the Pacific and Indian Oceans at lead times out to 8months. POAMA forecasts for the western Pacific
generally have greater skill than persistence, particularly at longer lead times. POAMA also has comparable
or greater skill than previously published statistical forecasts from both a Markov model and canonical
correlation analysis. Our results indicate the capability of physically based models to address the challenge of
providing skillful forecasts of seasonal sea level fluctuations for coastal communities over a broad area and at
a range of lead times.

1. Introduction

Many millions of people living in coastal regions are vulnerable to sea level extremes resulting from the
combined effect of storm surges, seasonal and interannual sea level anomalies, and long-term sea level rise
[Nicholls and Cazenave, 2010]. Accurate coastal sea level predictions would assist in preparing for extreme
events. While sea level rise related to climate change is of overriding importance onmultidecadal time scales,
the variations on seasonal and shorter time scales are of immediate concern. Seasonal sea level anomalies
in the region of interest can exceed 25 cm (Figures 1a and S1 in the supporting information), are comparable
to the magnitude of nontidal anomalies, and are significantly correlated with the El Niño–Southern
Oscillation (ENSO) [Menéndez and Woodworth, 2010]. As a result they can add significantly to storm surges
or exacerbate the effects of low sea levels.

While sea level rise has been a major focus of international research [Church et al., 2013], and there are a num-
ber of operational storm surge prediction programs, the influence and prediction of interannual and seasonal
sea level anomalies has received less attention, with statistically based operational prediction schemes avail-
able at only a few locations in the western equatorial Pacific Ocean [Chowdhury et al., 2014, 2007]. Local and
regional seasonal-to-interannual sea level anomalies are strongly affected by large-scale climate phenomena
and ocean dynamical processes that are central to the predictive skill of dynamical models such as Predictive
Ocean Atmosphere Model for Australia (POAMA) and other dynamical models used for the prediction of
interannual climate anomalies. The seasonal forecast skill of POAMA originates primarily from the ENSO
coupled ocean-atmosphere interaction in the equatorial Pacific region [Wang et al., 2011].

Miles et al. [2014] have evaluated the large-scale skill of POAMA sea level predictions. Here we extend that
work to evaluate POAMA’s skill to predict coastal sea level as measured by coastal and island tide gauges
in the Pacific and eastern Indian Ocean.

2. Data and Methods

POAMA consists of a global coupled ocean-atmosphere dynamical model and an ensemble generation initi-
alization scheme [Hudson et al., 2013]. The ocean grid is relatively coarse, being 2° east-west, and increasing
from 0.5° at the equator to 1.5° at the poles. There are 25 vertical levels, with 13 in the top 200m. Forecasts are
produced in real time, and a set of retrospective forecasts (hindcasts) extending back to 1981 is available for
assessing model skill. Forecasts are typically of 1month averages and extend for 9months. Ocean initial con-
ditions are generated by the POAMA Ensemble Ocean Data Assimilation System (PEODAS) [Yin et al., 2011]
using an approximate ensemble Kalman filter [Oke et al., 2005]. While this system assimilates surface and
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subsurface observations of temperature and salinity, it does not use in situ or satellite observations of sea
level. POAMA has been shown to be skillful at predicting the ENSO signal in the Pacific at lead times up to
9months [Hudson et al., 2010], including the ability to predict some of the key inter-El Niño differences in
the pattern of sea surface temperature anomalies [Griesser and Spillman, 2012; Hendon et al., 2009]. In an
earlier phase of this work, we have demonstrated that PEODAS and POAMA are able to represent large-scale
seasonal sea level anomalies skillfully across the tropical Pacific and parts of the Indian Ocean with lead times
exceeding 3months [Miles et al., 2014]. The lead time is defined by convention as the time between the start
of the forecast and the beginning of the 1month forecast period.

To evaluate POAMA’s ability to forecast coastalmean sea level, we use monthly sea level data over the 30 year
period 1981–2010 from a representative selection of tide gauge stations in the tropical Pacific Ocean and along
the eastern boundaries of the Pacific and Indian Oceans (Figure 2a and Table S1 in the supporting information)
obtained from the Permanent Service for Mean Sea Level [Holgate et al., 2012] and the University of Hawaii Sea
Level Center [UHSLC, 2014]. All tide gauge stations used here have long records with minimal gaps and provide
a representative spatial coverage of the study region. Missing tide gauge observations are ignored rather than
interpolated. Sea level on the POAMA grid is linearly interpolated to the tide gauge locations, unless the tide
gauge is located outside the ocean model grid, in which case the nearest grid point is used.

The ocean dynamical processes associated with forecast skill are indicated schematically in Figure 2b. These
will be discussed in the context of POAMA’s skill at forecasting sea level (Figures 2c and 2e) compared to
the skill at forecasting sea surface temperature (Figures 2d and 2f). The former is calculated using
TOPEX/Poseidon and Jason-1 satellite data [Miles et al., 2014], while the latter is assessed using the
Hadley Centre’s sea ice and sea surface temperature data set HadISST1 [Rayner et al., 2003].

Skill is measured by the anomaly correlation coefficient (Pearson’s “r”) after linearly detrending the forecast
and data and removing the seasonal cycle. Detrending prevents long time scale sea level changes from
artificially increasing the correlation skill. Linear detrending is adequate for the relatively short 30 year
period considered. When comparing two correlation coefficients, Fisher’s z transformation [Press et al., 1986]
is used with 1 degree of freedom per year. Since our hypothesis is that our results are more skillful, a one-sided
test is warranted. The time period representing 1 degree of freedom is calculated at each tide gauge station
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Figure 1. Observed (solid) and forecast (dashed) sea level anomalies at Malakal (blue) and Christmas Island (red) in the Pacific.
Forecast lead times are (a) 0month and (b) 6months. The seasonal cycle has been removed, but the linear trend over
1981–2010 is retained and is shown in Figure 1a for both sites. The spread of the 33 ensemblemembers (5th–95th percentiles)
is also shown (shading).
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from the first zero crossing of the auto-
correlation function and also from twice
the e-folding time [Leith, 1973]. The aver-
age of all these values is 11.5months.

The skill at forecasting individual tide
gauge records is calculated as a function
of lead time over all months (Figure 3).
(Skill for individual months is available in
Figure S2 in the supporting information.)
The forecast period is for 1 month unless
otherwise noted. For example, sea level
forecasts for the month of April at lead
times 0, 1, and 2months would be initia-
lized on 1 April, 1 March, and 1 February,
respectively. Forecast skill is compared to
the skill of a persistence forecast, that is,
a forecast that sea level anomaly does
not change from the initial value. In this
case, a lead time zero forecast of April
sea level would be the observed monthly
mean sea level in March.

Model sea level anomalies are calibrated
to remove known biases in the model
mean and ensemble spread. The calibra-
tion is performed over 30 years sepa-
rately for each lead time and for each
start month to allow for seasonally
dependent bias andmodel drift. The cali-
bration method scales both the variance
of the ensemblemean and the ensemble
spread to match the observations. This
ensures that the climatological variance
of the forecasts is the same as that of
the observations and that the mean
square error of the ensemble mean

equals the climatological average of the ensemble variance [Johnson and Bowler, 2009]. This differs from the
method used by Miles et al. [2014] in that it not only removes the mean bias but also corrects the variance and
ensemble spread. The calculation is cross validated by leaving out the year being calibrated. Calibration improves
the statistical reliability of the forecasts by ensuring a realistic ensemble spread. In the absence of cross validation,
calibration does not alter the correlation skill. The addition of cross validation reduces the forecast skill slightly.

3. Results

Examples of the observed and forecastmonthly sea level anomalies at lead times of 0 and 6months from thewes-
tern and central/eastern Pacific (Malakal and Christmas Island, respectively) are shown in Figure 1. The opposite
sign of the sea level anomalies at these two stations indicates the well-known oscillation of sea level across the
Pacific [Allan et al., 1996] associated with ENSO. The predictions for all locations are given in Figure S1 in the sup-
porting information. The equatorial Kelvin and Rossby waveguides associated with this oscillation, as well as the
coastally trapped waves propagating away from the equator along the west coasts of the Americas and Australia,
are shown schematically in Figure 2b. The skill of POAMA, measured by the correlation between the ensemble
mean sea level forecast and satellite altimeter data [Miles et al., 2014], is greatest along these waveguides
(Figures 2c and 2e). The skill typically exceeds 0.8 within 10° of the equator at lead 0 (not shown), decreasing at
lead times of 3 and 6months but generally remaining above 0.6 along the waveguides (Figures 2c and 2e).

Figure 2. (a) Location of tide gauges (uppercase letters; see Table S1 in
the supporting information for details); (b) arrows indicating the approximate
Kelvin wave guides (black), Rossby wave paths (red), and coastally
trapped waveguides (green). Correlation skill (r) of POAMA forecast of
1 month (c and e) sea level and (d and f) sea surface temperature
forecasts compared to observed satellite sea levels and observed sea
surface temperatures at lead times of 3 months (Figures 2c and 2d) and
6months (Figures 2e and 2f), respectively, for all start months in the
years for which satellite sea level data are available (1993–2010).

Geophysical Research Letters 10.1002/2015GL065091

MCINTOSH ET AL. SEASONAL SEA LEVEL PREDICTION 6749



POAMA sea level forecasts generally have greater skill than forecasts of sea surface temperature (compare
Figure 2cwith Figure 2d and Figure 2ewith Figure 2f). POAMA’s skill at forecasting the depth of the 20°C isotherm
(a measure of thermocline depth) is very similar to its sea level skill in the equatorial Pacific (not shown). The
dominant Kelvin and Rossby waves in the equatorial ocean have a direct relation between thermocline depth
and sea level, while they have only an indirect relation to sea surface temperature [Rebert et al., 1985]. These
ocean dynamical wave processes are responsible for the relatively high skill of POAMA sea level forecasts.

Figure 3. Correlation skill (r) between POAMA ensemble mean forecast and tide gauge observations (blue) and between a
persistence forecast and observations (red) as a function of lead time for all months for 1981–2010. The black dashed line is
the p value for the hypothesis that the POAMA correlation skill is greater than the skill of persistence. Circles indicate where
POAMA skill is greater than persistence skill at the 95% significance level (p = 0.05).
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At tide gauges in the western equatorial Pacific Ocean (15°S–15°N, west of 150°W), the POAMA forecast skill is
high at zero lead time, exceeding 0.9 at most locations (Figures 3c–3k). The skill often exceeds the skill
of persistence at the 95% significance level at lead times of up to 8months, with the POAMA skill advan-
tage increasing at longer lead times. A persistence forecast assumes no change from the initial condition
and is a useful benchmark for ENSO-related seasonal forecasts [Torrence and Webster, 1998]. For example, at
Guam (Figure 3d), the lead 0 skill of POAMA and persistence is the same, but after 3months the skill of persistence
decreases to 0.6, whereas POAMA takes 8months for the skill to decrease to the same value. This represents a sub-
stantial increase in forecast lead time at a useful level of skill. We note the difficulty in establishing a high level of
confidence (95%) in POAMA’s improvement in skill due to the limited degrees of freedom typical of studies at inter-
annual time scales. However, there is a degree of informal confidence to be gained from thewidespread increase in
correlation skill associated with an understanding of the physical mechanisms underlying this.

There is a moderately significant skill increase in the eastern Indian Ocean (Figures 3a and 3b), following the
ocean waveguide (Figure 2b) through the Indonesian Archipelago and south along the west coast of Australia
to Port Hedland and Fremantle [Hendon and Wang, 2009]. Following the equatorial Pacific waveguide east to
Santa Cruz in the Galapagos Islands, the skill is high at zero lead (Figure 3o) and then decreases out to a lead time
of 4months (similar to the fall in skill with persistence). At longer lead times, the skill remains almost constant
compared to a continuing fall in skill in persistence. A similar pattern is seen at the coast at Callao (Figure 3p).
Along the North American west coast at San Francisco (Figure 3n), POAMA performs less well than persistence
for small lead times but has larger skill for lead times greater than 3months. The reason for the reduced model
skill along the North and South American coasts may be the inability of POAMA to resolve sufficiently the local
winds causing upwelling of cold water, and hence altered sea level, close to the coast. In addition, the combina-
tion of relatively sparse ocean observations and the coarse (2°) east-west grid of the ocean component of POAMA
may not be capable of adequately initializing and propagating Kelvin waves along this coast.

Away from the equatorial waveguide in the central Pacific, POAMA shows comparatively lower skill at short
lead times butmaintains a useful advantage over persistence at longer lead times at Papeete (Figure 3m) and,
to a lesser extent, at Honolulu (Figure 3l).

POAMA forecast skill shows a strong seasonal cycle at many of the tide gauge stations (Figure S2 in the
supporting information). The Northern Hemisphere spring predictability barrier [Torrence and Webster, 1998]
results in a reduction in skill at longer lead times for forecasts starting in March–May in the western North
Pacific (Malakal, Pohnpei, and Kwajalein). However, in the South Pacific and east of the dateline, Funafuti,
Pago Pago, and Papeete (Figures S2i, S2j, and S2m in the supporting information) have their greatest skill for
forecasts starting in March to May. In the eastern Indian Ocean, and at the skillful stations in the eastern
Pacific (Santa Cruz and Callao, Figures S2a, S2b, S2o, and S2p in the supporting information), the greatest skill
is for forecasts starting between about November and February.

The spread of the ensemble of forecasts provides information about the uncertainty inherent in these fore-
casts, and it is desirable to provide predictions in a form that acknowledges this uncertainty (shaded area in
Figures 1b and S1 in the supporting information). The simplest probabilistic forecast is to provide the chance
of sea level exceeding the long-term median value. A measure of skill of such a forecast is the statistical relia-
bility [Wilks, 2007], which assesses how accurately each level of chance is realized in the long term. For exam-
ple, considering all forecasts that sea level has a 70% chance of exceeding the median, it is desirable that sea
level was observed to exceed the median about 70% of the time. In general, we find that forecasts with
higher correlations are also the most reliable (see Figure S3 in the supporting information). In practical terms,
forecasts that have high correlations and are reliable will tend to have an ensemble spread that encompasses
the observed sea level most of the time. For example, at Malakal and Christmas Island the observed sea level
lies within the 90th percentile of the 6month lead forecast ensemble 83% and 79% of the time, respectively
(see Figure 1b). These figures would be exactly 90%, given the calibration method used, if the observed and
modeled sea levels were exactly Gaussian and cross validation was not applied.

4. Discussion and Conclusions

Compared to the Markov model of Xue and Leetmaa [2000] (their Figures 4 and 5), the POAMA monthly
forecast skill at Christmas Island and Malakal (also known as Koror) is greater at both sites for all lead times,
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primarily due to a better representation
of the 1982–1983 and 1997–1998
El Niño events and the 1988–1989
La Niña event. For example, the greatest
improvement in skill is at Christmas
Island at lead time zero, where the
POAMA skill is 0.93 compared to the
Markov model skill of 0.87 (significant
at the 84% level for a one-sided test
assuming 1 degree of freedom per
year). At Malakal at lead 0, POAMA has
a skill of 0.90 compared to the Markov
model skill of 0.83 (one-sided signifi-
cance of this increase is 80%). At lead
times of 3 and 6 months, POAMA is only
slightly more skillful than the Markov
model, although in both cases POAMA
represents the 1988–1989 La Niña event
more accurately.

POAMA seasonal forecast skill also gener-
ally exceeds that of an operational sea
level forecasting scheme for a set of U.S.-
affiliated Pacific Islands (Guam, Malakal,
Pohnpei, Kwajalein, and Pago Pago) using
canonical correlation analysis (CCA) based
on sea surface temperature [Chowdhury

et al., 2007] and now also surface winds [Chowdhury et al., 2014] (Figure 4). POAMA forecasts of seasonal (3month)
sea level at lead 0 have a higher correlation than the CCAmethod at five sites and in all seasons except for October,
November, and December (OND) and January, February, and March (JFM) at Pago Pago. Twelve (out of 20) of the
POAMA correlations are significantly greater than those of the CCA method at the 95% level, with a further four
significantly greater at the 80% level. While the addition of surface winds to the statistical CCAmethod has resulted
in an increase in skill, it is clear that modeling a broader range of dynamical features using POAMA leads to further
improvements in skill. A dynamical model-based approach also enhances the ability to diagnose the physical pro-
cesses underpinning forecast skill, providing a basis for further improvement. Importantly, POAMAdoes not assume
climate stationarity, so the model should remain applicable under a changing climate.

These POAMA results combined with a previous global assessment study [Miles et al., 2014] demonstrate the
skill of a dynamical model at predicting seasonal coastal sea level anomalies. The region of maximum skill is
located near the equator in the Pacific, and along the waveguides emanating from this region (Figure 2), with
small variations zonally and larger variations meridionally. However, there is considerable scope for further
improvement. A large component of the POAMA skill is derived from its ability to predict ENSO accurately,
and the skill is smaller outside the waveguides extending from the Pacific equatorial region. Refinement of
the relatively coarse model grid will help to resolve more accurately the islands in the Western Pacific, the
narrow upwelling regions in the eastern Pacific, and the western boundary regions. Higher resolution will also
help improve the atmospheric winds that are an important component of the key coupled ocean-
atmosphere dynamical processes. Finally, improved initial conditions through explicit use of altimeter data
should help initialize the large-scale ocean waves more accurately.

The 30year time series of observed and forecasted sea level at almost all sites showmultiyear to decadal oscillations
with amplitudes of 50cm or more (Figures 1 and S1 in the supporting information). It is encouraging that POAMA
appears capable of representing these longer time scales, and this is attributed to the ability of the initialization
scheme to assimilate ocean and atmospheric observations prior to each forecast.

The present results demonstrate the potential skill of an operational dynamical seasonal forecast system for
predicting coastal sea level anomalies up to 8months in advance. Such seasonal sea level predictions would
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allow coastal communities to better prepare for and manage the impacts of severe coastal flooding and
erosion associated with high sea levels [Committee on Sea Level Rise in California Oregon and Washington et al.,
2012], as well as the impacts of low sea levels such as coral mortality and Taimasa (foul-smelling tide in Samoa
[Pirhalla et al., 2011]). These results also serve to demonstrate that while sea level rise of up to 1m this century
is a significant concern, the greatest impact will come from a combination of the rapid sea level fluctuations
of half this amplitude that are already occurring onmuch shorter time scales superimposed on the ongoing rise.
The ability to predict significant sea level variations with a lead time of several months is likely to have immediate
value and utility. Seasonal sea level predictions and knowledge of the risk from storm surges combined with
projections of sea level rise and changes in seasonal variability would significantly advance the development
of informed management plans to increase the resilience of coastal communities.
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