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Abstract 

Alzheimer’s disease is the most common form of progressive dementia, typified initially by short term 

memory deficits which develop into a dramatic global cognitive decline. The classical hall marks of 

Alzheimer’s disease include the accumulation of amyloid oligomers and fibrils, and the intracellular 

formation of neurofibrillary tangles of hyperphosphorylated tau. It is now clear that inflammation also 

plays a central role in the pathogenesis of the disease through a number of neurotoxic mechanisms. 

Microglia are the key immune regulators of the CNS which detect amyloidopathy through cell surface 

and cytosolic pattern recognition receptors (PRRs) and respond by initiating inflammation through the 

secretion of cytokines such as interleukin-1β (IL-1β). Inflammasomes, which regulate IL-1β release, 

are formed following activation of cytosolic PRRs, and using genetic and pharmacological 

approaches, NLRP3 and NLRP1 inflammasomes have been found to be integral in pathogenic 

neuroinflammation in animal models of Alzheimer’s disease. Therefore, the inflammasomes are very 

promising novel pharmacological targets which merit further research in the continued endeavour for 

efficacious therapeutics for Alzheimer’s disease.      
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Introduction 

Alzheimer’s disease (AD) is the most common form of progressive dementia representing 60-80% of 

dementia cases and affects 26 million people worldwide (7). It is characterised by memory loss and a 

gradual decline of cognitive function which leads to complete dependence on care, with death 

occurring an average of 5-7 years from diagnosis (167). Currently there are only symptom modifying 

interventions for AD which do not alter the progression of the disease (28). Therefore, new treatments 

are desperately needed (7). 

Histological investigation provided the first insights into the underlying causes of AD. Over a century 

ago Alois Alzheimer described the pathological hall marks of the disease of large insoluble plaques 

and neurofibrillary tangles (6). The plaques are composed of aggregates of amyloid-β (Aβ) peptide, 

while neurofibrillary tangles are caused by the accumulation of insoluble filaments of 

hyper-phosphorylated tau. Subsequent histological studies have identified neuroinflammatory 

responses by astrocytes and microglia as another characteristic of AD. However, research is on-going 

into whether these histological markers of the disease represent pathological drivers, unrelated 

by-products or unsuccessful repair mechanisms.  

Neuroimaging and biomarker studies have established that amyloid changes occur prior to tau 

pathology and this supports the most widely accepted description of the underlying pathology of AD 

which is the amyloid cascade hypothesis (120). This states that AD is caused by disruptions in 

amyloid processing and/or clearance leading to an accumulation of monomer amyloid peptides which 

oligomerize into soluble toxic oligomers and insoluble fibrils, the major constitute of plaques (54). This 

amyloid pathology then interacts with a number processes, including tau physiology and inflammation, 

to eventually cause neuronal death and cognitive decline (54). 

Genetic evidence supports the amyloid hypothesis; mutations in amyloid precursor protein (APP) or 

amyloid processing enzymes are the only known causes of autosomal dominant inheritable familial 

AD (12). No mutations in tau have been found to cause AD. However, genome wide association 

studies have identified a number of other gene variants which confer an increased risk in the 

development of sporadic AD and these variants have been found to be involved in a variety of 

physiological processes including lipid transport and autophagy, such as APOE4 (apolipoprotein E4) 

and PICALM (phosphatidylinositol-binding clathrin assembly protein), respectively reviewed by 

Tosto et al. (161). Of interest to this review is that a number of variants of genes involved in regulating 

innate immune function confer a greater risk to developing AD (58,129).  Examples include 

loss/reduction of function mutations in the anti-inflammatory/phagocytosis TREM-2  (triggering 

receptor expressed on myeloid cells 2) gene (52); variants of promoter regions of inflammation 

modulating cytokines interleukin-10 (IL-10) and TNFα (tumour necrosis factor α) (130); 

loss/reducation of function of the anti-inflammatory/phagocytosis receptor CD33 gene (20); and gene 

variants of the complement receptor 1 (CR1), which may be integral to the phagocytosis of opsonized 

amyloid oligomers (62). The number and range of risk genes that are related to immune function 

demonstrate the integral role inflammation may play in the pathogenesis of AD.   
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Neuroinflammation and AD 

Inflammation is a beneficial immune-vascular response to damage and infection which involves the 

activation and recruitment of immune cells. This response is regulated by cytokine signalling 

molecules, of which interleukin-1β (IL-1β) is considered a central member. However, chronic or 

excessive inflammation can exacerbate tissue damage and contribute to disease. Neuroinflammation 

is primarily regulated by microglia, the resident immune cells of the brain. These cells make up 

10%-15% of the cells of the brain and in a resting state exist in a ramified morphology with long 

processes which are continually monitoring the extracellular environment for perturbations in 

homeostasis, tissue damage or infection (125). Upon sensing a change to the extracellular 

environment, microglia become activated and develop an amoeboid morphology. An activated 

microglia can act in an anti- or pro-inflammatory manner depending on the stimuli. Anti-inflammatory 

activated microglia clear debris through phagocytosis, and secrete anti-inflammatory cytokines such 

as IL-4 and resolution growth factors including brain derived neurotrophic factor (BDNF) (115). A pro-

inflammatory activated microglia will release neurotoxic reactive oxygen species (ROS) and 

inflammatory cytokines, initiating a potentially damaging immune-vascular response (17,125). 

Astrocytes are also heavily involved in immune regulation in the brain with continued research 

supporting growing overlap in astrocyte and microglia function including phagocytosis (69), antigen 

presentation (31), cytokine secretion (22), ROS production (144) and vascular modulation (23,150). 

Histology and PET imaging studies demonstrate that inflammatory phenotypes of astrocytes and 

microglia are a pathological hallmark of AD (14,65). 

 

Using traditional histological methods, clusters of activated microglia and astrocytes have been shown 

to occur in in AD patients (14,65). These clusters appear in close proximity with amyloid plaques and 

larger plaques correlate with a greater number of associated microglia, suggesting that amyloid fibrils, 

or the relatively high concentrations of amyloid oligomers found in the peri-plaque region, are 

inflammatory (65,79). Microglia activation can be investigated using PET imaging with 

radiopharmaceutical tags. Studies using the activated microglia tags [11C](R)-PK11195 and 

[11C]DAA1106, which recognise the 18 kDa translocator protein (TSPO) present on activated 

microglia, found that AD patients have elevated levels of activated microglia, and the level of 

activation correlates with the severity of AD (25,175), (172). Furthermore, the second generation 

TSPO ligand [11C]DAA1106 has been used to demonstrate that inflammation is present in people with 

mild cognitive impairment (MCI) who then go on to develop AD, suggesting that inflammation is 

chronic and ongoing prior to the onset of AD (172). The correlation between inflammation and AD 

severity and the presence of inflammation prior to AD onset suggests a causal relationship between 

inflammation and AD. This is further supported by epidemiological evidence that known risk factors for 

AD have an inflammatory component including stroke (163), head trauma (105), diabetes (111), mid-

life obesity (169), aging (80,124) and infection (121) (fig. 1).  

 

Mechanisms of inflammation induced neurodegeneration 
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Inflammation in the brain can cause neuronal dysfunction and death through a number of 

mechanisms. These can be grouped into the direct and indirect effects of inflammation on neurones. 

Direct effects are those in which immune cells engage in neurotoxic activities such as the production 

of digestive enzymes and ROS, and phagocytosis of healthy neurones. The indirect effects of 

neuroinflammation are caused by astrocytes and microglia not performing their role as homeostasis 

managing cells which results in neuronal death through perturbations in the intracellular and 

extracellular environments. Through these mechanisms it has been shown that neuroinflammation 

alone is enough to cause cognitive deficits and  tauopathology;  it is particularly interesting that brain 

regions most affected by AD, such as the hippocampus, are also the most vulnerable regions to 

neuroinflammation (61,87).   

 

Perhaps the best characterised mechanism of inflammation induced neurotoxicity is the production of 

ROS and reactive nitrogen species (RNS) (16,42). ROS and RNS are highly reactive molecules which 

can cause auto-catalytic oxidation of phospholipids resulting in the permeabilisation of membranes, 

oxidation of proteins perturbing cellular function and DNA damage leading to disruption of protein 

production (16,42). Ultimately, if ROS and RNS production overwhelms the antioxidant mechanisms 

of the cell, the build-up of oxidative damage will lead to cell death. Amyloid has been shown to induce 

the production of ROS and RNS in microglia and astrocytes (2,3,66). Fibrillary Aβ induces the 

expression of the ROS producing enzymes nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase and inducible nitric oxide synthase (iNOS). These enzymes produce the highly neurotoxic 

ROS species superoxide and nitric oxide, respectively (128,162,168,170). Microglia cytokine 

secretion causes the recruitment of peripheral immune cells into the brain including neutrophils which 

produce the highly neurotoxic ROS hypochlorite (39,173). In additional to ROS and RNS, neutrophils, 

microglia and astrocytes all secret neurotoxic proteases including neutrophil elastase, cathepsins and 

chymotrypsin-like proteases (76,77,173). Independent from secreted neurotoxins, microglia induce 

neuronal death by direct phagocytosis of healthy neurones. Nanomolar concentrations of amyloid 

monomers, oligomers or fibrils induced microglial phagocytosis of healthy neurones through a 

membrane phosphatidylserine dependent mechanism (108,171).  

 

Microglia are essential to the functioning brain. Their role in synapse modulation, microenvironment 

maintenance and homeostasis is crucial to neuronal function. A seminal paper by Parkhurst et al. 

(115) demonstrated that depletion of microglia from the cortex of mice caused a significant 

impairment in learning and memory. Using selective deletion of BDNF from microglia, Parkhurst et al. 

demonstrated that it is likely that BDNF production is one of the essential functions of microglia in a 

healthy brain (115). Microglia treated with amyloid have been shown to dramatically lower the 

production of BDNF while increasing the production of inflammatory cytokines (60). Additionally, 

chronically inflamed microglia fail to perform their role of protein uptake and degradation from the 

extracellular environment and this can lead to the build-up of protein aggregates such as amyloid 

oligomers and fibrils. This is supported by research demonstrating that chronic inflammation induced 
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by head trauma (26,67), infection (44), obesity (78,98) or bacterial toxins (122,127) accelerates 

amyloid deposition and memory deficits (113) (fig. 1). 

 

While it appears that amyloid pathology is a causal factor in neuroinflammation in AD, it is remains 

unclear how amyloid is linked to the tau pathology and neurofibrillary tangles (fig. 1). There is growing 

evidence that neuroinflammation may be one of the critical linking factors (fig. 1). Overexpression of 

inflammatory cytokines has been shown to increase tau pathology (48). Furthermore, infection and 

bacterial toxins have been shown to exacerbate tau phosphorylation and aggregation in mouse 

models of AD and repeated mild head injury alone in wild-type mice is enough to induce AD-like tau 

pathology (84,99,157). There is also evidence that activated microglia cause tau pathology 

propagation through the secretion of phosphorylated tau in exosomes (8). Interestingly, tau pathology 

may be causal factor in neuroinflammation induced neurotoxicity with genetic deletion of tau providing 

protection from inflammatory stimuli in cultured neurones (95). Collectively, this evidence supports a 

model of AD where amyloid induces sustained inflammation which causes and propagates 

phosphorylated and aggregated tau species which contributes substantially to neuronal death in AD 

(fig. 1). 

 

As the primary resident immune cell of the brain, microglia are equipped with a number of cell 

membrane and cytosolic pattern recognition receptors (PRRs) which initiate the inflammatory 

phenotype. The cell surface toll-like receptor (TLR) family are a group of structurally similar PRRs 

expressed in adaptive and innate immune cells, as well as epithelial, endothelial and fibroblast cells. 

They are traditionally thought of as receptors which recognise pathogen associated molecular 

patterns (PAMPs) which upon activation initiate a range of responses including cytokine secretion, 

antigen presentation and proliferation; however it is now clear that several TLRs are integral to the 

neuroinflammatory response in AD.  TLR2 can directly bind amyloid and initiate an inflammatory 

response through the transcription factor NFκB (nuclear factor kappa-light-chain-enhancer of 

activated B cells) and JNKs (c-Jun N-terminal kinases) (32,86,90,100) (fig. 2). Inhibition of TLR2 has 

been found to be therapeutic in mouse models of AD (100). TLR4 and its co-receptor CD14, and 

scavenger receptor A and the Ca2+-activated K+ channel (KCa3.1) have also been implicated in the 

detection of amyloid species in the extra-cellular environment (93,132) (fig. 2). The role of TLR4 

signalling in AD pathology is supported by human genetic evidence. A rare variant in the TLR4 gene 

that causes a reduction in function has been found to dramatically decrease the risk of developing late 

onset AD (104). Amyloid is also phagocytosed by microglia through binding to the phagocytotic 

receptor complex that includes CD36, CD47, and α(6)β(1)-integrin (11) (fig. 2). Inside the cell, amyloid 

may also affect cytosolic PRRs, such as NLRP3 (NLR family, pyrin domain containing 3), to activate 

inflammatory complexes called inflammasomes (fig. 2, and see below). These have been found to be 

critical in AD associated inflammation through the release of the inflammatory cytokine IL-1β (35,56) 

(fig. 2).  
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Interleukin-1β 

There is growing clinical and preclinical evidence that the inflammatory cytokine IL-1β plays a central 

role in the induction of pathogenic neuroinflammation in AD (24,149).  The release of IL-1β from 

immune cells facilitates the orchestration of an inflammatory response, mediating the increased 

expression of adhesion molecules, immune cell infiltration (166), and the production of further 

inflammatory cytokines (38).  Due to the central role of IL-1β in coordinating inflammatory responses it 

is regulated at multiple biological check points: expression, maturation, and secretion (143). IL-1β is 

expressed as an inactive precursor, proIL-1β, which is mediated through a NFκB-dependent 

mechanism downstream of cell surface PRRs or IL-1 receptor 1 (IL-1R1) (158). For example, a well 

characterised method of inducing proIL-1β expression is the activation of TLR4 by lipopolysaccharide 

(LPS) (27). ProIL-1β is biologically inactive requiring proteolytic cleavage into its mature form which is 

mediated by caspase-1, a pro-inflammatory cysteine aspartate-specific protease. Alongside IL-1β 

cleavage caspase-1 has additional essential roles, previously reviewed by Denes et al. (36), of note: 

cleavage of proIL-18 and initiating the inflammatory form of cell death, pyroptosis (fig 2). During 

pyroptosis, gasdermin D is cleaved by caspase 1 and the N-terminal fragment associates with the cell 

membrane facilitating membrane permeabilisation, cell death and IL-1β (and IL-18) release (74,146). 

Once cleaved, IL-1β is secreted from cells through a non-conventional pathway, bypassing the Golgi-

ER network, and has been demonstrated to be secreted by several mechanisms, including: the 

shedding of micro-vesicles and cell membrane permeabilisation. Secretion of IL-1β from cells has not 

been fully elucidated, however it is largely accepted that the mode of secretion engaged by cells is a 

continuum dependent upon the strength stimulus, reviewed by Lopez-Castejon and Brough  (91). 

However, caspase-1 is produced in cells as an inactive zymogen, procaspase-1, and requires 

proximity-induced self-cleavage for activation. Homotypic interactions between death domains motifs 

between proteins facilitate the oligimerisation large multimeric protein structures which act as 

platforms to concentrate caspase-1 and catalyse auto-activation (82,83,133). 

Inflammasomes - protein scaffolds for caspase-1 activation 

The large protein complexes which facilitate caspase-1 activation are referred to as “inflammasomes” 

and are largely comprised of three core components: an inflammasome sensor molecule, an adaptor 

protein, apoptosis-associated speck-like protein containing a CARD (ASC), and caspase-1(83,143). 

Inflammasome sensing molecules are intracellular PRRs which sense inflammatory stimuli and 

oligomerise with ASC via pyrin (PYD) death domains. This initial ASC seeding triggers rapid 

recruitment of ASC dimers to form large protein specks (83). Subsequently, interactions between 

caspase activation and recruitment domains (CARD) present in ASC and procaspase-1 recruit 

caspase-1 to the inflammasome and initiate self-cleavage (43,126). Multiple sensor molecules have 

been identified which trigger inflammasomse oligimerisation, all maintaining a common basic 

organisation but varying in formation, structure and activation.  

The majority of inflammasome sensors that have been identified contain a NOD-like receptor (NLR) 

domain, characterised by three distinct entities: a common NACHT domain; a leucine rich repeats 
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(LRRs) domain and one or both death domains, PYD or CARD mediating ASC/caspase-1 interaction 

(97). The first inflammasome to be identified was the NLRP1 (NOD-, LRR- and pyrin 

domain-containing 1) followed by the identification of additional NLR containing inflammasomes, 

including: NLRP3, NLRP6, NLRP7, NLRP12 and NLRC4 (NOD-, LRR- and CARD-containing 4) (83) 

which are activated in response to a broad range of molecular signals. For example, it has been 

demonstrated that murine NLRP1, NLRP7 and NLRC4 are activated in response to: anthrax toxin 

(19), bacterial LPS (75) and cytosolic flagellin (1), respectively. Another inflammasome, absent in 

melanoma 2 (AIM2), has been identified which contain a sensor molecule that contains a pyrin and 

HIN domain-containing protein (PYHIN) domain (21). The HIN region has been shown to bind directly 

to cytosolic DNA to facilitate inflammasome formation and caspase-1 activation. The identification and 

characterisation of these inflammasome structures, their specific activators and independent 

mechanisms of activation demonstrates the immense complexity of the innate immune system and its 

ability to detect and respond to danger signals. 

NLRP3 Inflammasome 

Canonical NLRP3 activation 

The most extensively studied inflammasome is the NLRP3 inflammasome and has been strongly 

implicated in AD pathology (57). Despite being well studied the mechanisms underpinning NLRP3 

activation have not been fully elucidated. Canonical NLRP3 activation, similar to IL-1β maturation, 

requires two independent signals: (i) an initial NF-κB activating signal to upregulate NLRP3 

expression (13) and (ii) an additional activating signal which initiates a conformational change in 

NLRP3 and drives inflammasome assembly. Whilst a diverse range of molecules have been 

demonstrated to activate NLRP3, the molecular pathways which lead to its activation are incompletely 

understood. Various models of activation have been hypothesised, including: (i) formation of pores in 

the membrane and subsequent K+ efflux (45,119); (ii) lysosomal rupture and release of cathepsins 

into the cytosol (64); (iii) mitochondrial dysfunction and the production of ROS (148) and (iv) post 

translational modifications, including deubiquitination (71,92). In a landmark paper, Muñoz-Planillo et 

al. (106) were able to demonstrate that the proposed hypotheses for NLRP3 activation converge on 

K+ efflux, leading to the acceptance of its pivotal role in triggering NLRP3 activation. Recent studies 

have also illustrated that volume regulated anion channels (VRAC) and subsequent Cl- efflux are also 

vital for inflammasome activation (35). Another landmark discovery in the field of NLRP3 activation is 

the identification of NEK7 (NIMA-related kinase 7) as an essential upstream regulator of NLRP3 (fig. 

2). Two groups independently demonstrated NEK7 directly interacting with NLRP3 and that this 

interaction is essential for ASC recruitment and inflammasome activation (142,145). It is evident that 

the activation and regulation of NLRP3 is a rapidly expanding field and new discoveries are constantly 

being made identifying novel molecular pathways involved in its regulation (fig. 2).  

 

A diverse range of activators have been identified including pathogenic, environmental and sterile 

molecules. Pathogenic activators which activate NLRP3, range across the microbial spectrum 

including: viruses, fungi, and pore forming toxins produced from bacteria, including nigericin produced 
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from Streptomyces hygroscopicus (118). Environmental pollutants, such as silica and asbestos (40), 

can also activate the inflammasome. Notably, NLRP3 inflammasome is activated to a diverse range of 

endogenous danger signals and consequently is implicated in the pathology of sterile inflammatory 

diseases. Sterile activators of the NLRP3 can been largely grouped into two main categories: (i) 

molecules released from dying cells and (ii) extracellular particulates. An example of the former 

includes the release of ATP into the extracellular milieu from dying cells, which activates P2X7 

ATP-gated ion channels causing K+ efflux and NLRP3 activation (96). The latter encompasses large 

sterile particulate matter, including crystals of monosodium urate and calcium pyrophosphate 

dihydrate, central to gout and pseudogout pathology respectively, and cholesterol crystals, involved in 

atherosclerosis (41). Moreover, Halle et al. (53) identified fibrillary Aβ as an NLRP3 activator. Other 

sterile activators of the inflammasome that have been identified include elevated extracellular glucose 

(174), zinc deficiency (155) and changes in osmolality (30). 

 

Non-Canonical NLRP3 activation 

In the addition to the canonical activation pathway, a non-canonical pathway of activation has been 

identified. This pathway describes murine caspase-11 or its human orthologues, caspase-4 and 

caspase-5 dependent NLRP3 activation, IL-1β release and pyroptotic cell death in response 

intracellular to Gram-negative bacteria. The non-canonical pathway was first described by Kayagaki 

et al. (74), where they demonstrated NLRP3 activation by pathogen stimuli was caspase-11 

dependent yet caspase-11 was not required for canonical NLRP3 inflammasome activation. It has 

since been discovered that intracellular LPS is the molecule which activates caspase-11 through 

binding to caspase-11 CARD domain and triggering oligomerisation and activation (147). Further 

research elucidated K+ efflux as the trigger for NLRP3 activation in the non-canonical pathway, 

identifying the point in which canonical and non-canonical pathways converge (135). More recently, a 

novel pathway of activation has been described in human monocytes, the alternative pathway. Gaidt 

et al. (46) discovered a novel pathway in human monocytes which leads to NLRP3 activation in 

response to LPS. Notably, activation via this pathway is independent of many of the hallmark features 

of canonical activation including K+ efflux and pyroptosis, and is mediated by a TLR-4/caspase-8 

dependent pathway. Despite the identification and characterisation of multiple inflammasomes 

adopting complex independent regulatory systems the end point remains unified: caspase-1 activation 

and IL-1β (and IL-18) maturation. 

 

The role of IL-1β and IL-18 in AD 

Elevated IL-1β levels in AD brains has been reported as early as 1989, and subsequent research has 

established a distinct role for IL-1β in AD pathology (51). There is increased IL-1β expression in 

microglia which cluster around amyloid plaques in the APPSwe/PS1deltaE9 (APP/PS1) mouse model 

of AD (149), and mice lacking IL-1 receptor antagonist, an endogenous IL-1 receptor 1 blocker, have 

increased microglial activation and neuronal damage after intracerebroventricular Aβ injection (34). 

Evidence also suggests that IL-1β can directly affect both the amyloidgenesis and tauopathy that is 

central to AD pathogenesis. It has been shown that IL-1β can upregulate APP and Aβ production in 

Page 8 of 28

Brain Pathology Editorial Office, Blackwell Publishing, Oxford, UK

Brain Pathology

This article is protected by copyright. All rights reserved.



astrocytes (15) and can induce tau phosphorylation via the MAPK-p38 pathway to form neurofibrillary 

tangles (50). Alongside IL-1β, IL-18 has been implicated in AD pathology; brains have increased 

mRNA and protein levels of IL-18 that co-localise with peri-plaque neurones, astrocytes and microglia 

in human AD tissue (109). Preclinical studies have also demonstrated a link between IL-18 and 

amyloidopathy and tauopathy. IL-18 has been shown to upregulate components of the γ-secretase 

complex accelerating Aβ production (156), and to elevate proteins associated with the 

hyperphosphorylation of  tau, such as, glycogen synthase kinase 3β and cyclin dependent kinase-5, 

in SH-SY5Y neuroblastoma cells (110). Additionally, genetic analysis has identified polymorphisms in 

the IL-18 promotor region to be associated with an increased risk in developing sporadic late onset 

AD in specific populations (18). Combined research has shown that IL-1β and IL-18 have a pivotal 

role in AD and has thus provoked further research focusing on the molecular entities upstream of IL-

1β and IL-18, investigating how inflammasome dysregulation may contribute to AD. 

Inflammasome activation in AD 

Following the discovery that fibrillar Aβ can activate NLRP3 (53), further research has identified that 

all amyloid species, monomers, oligomers and fibrils, have effects on NLRP3 expression and 

activation (fig. 2). A seminal paper published by Heneka et al. (56) directly implicated NLRP3 

activation in AD pathology. Heneka showed that APP/PS1/NLRP3-/- and APP/PS1/caspase-1-/- mice 

have reduced neuroinflammation, decreased amyloid burden and notably were protected from AD 

associated memory deficits. Interestingly, the reduced amyloid burden was found not to be due to a 

decrease in APP processing but rather an increase in phagocytic activity from microglia. This 

suggests that activated NLRP3 contributes to AD pathogenesis two-fold: generating toxic IL-1β and 

propagating neuroinflammation, whilst impeding Aβ clearance resulting in plaque build-up (49). 

Furthermore, research which crossed ASC-/- mice with the APPSwe,Flor,Lon, PSEN1, M146L, L286V 

(5xFAD) mouse model of AD found that 5xFAD/ASC+/- mice had reduced amyloid burden, increased 

astrocytic phagocytic activity and reduced memory deficits compared to the 5xFAD controls (33). The 

role of NLRP3 in AD has been further acknowledged in clinical studies, alongside a further 

inflammasome, NLRP1. Seresella et al. (140) investigated gene expression and inflammasome 

activation in monocytes from patients diagnosed with severe AD, mild AD and MCI. NLRP3 and 

NLRP1 inflammasome components were upregulated compared to age matched healthy controls and 

there was an augmented response to LPS and Aβ stimulation. An additional mechanism in which 

NLRP3 can contribute to AD pathogenesis is in response to dying neurones releasing ATP. The 

release of ATP can activate P2X7 receptors on microglia to activate NLRP3 and consequently 

exacerbate inflammation and damage (59). Furthermore, there is evidence of P2X7 receptor 

upregulation in both preclinical and clinical AD research (101). 

 

Unlike NLRP3 which is highly expressed in microglia, NLRP1 is mainly expressed in neurones (81) 

and its proposed role in AD pathogenesis is largely associated with neuronal death and axonal 

degeneration, although its exact role is not clearly defined. Tan et al. (160) found that NLRP1 levels 

are upregulated in APP/PS1 mice and went on to show in vitro that silencing of NLRP1 reduced 
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Aβ-induced pyroptotic cell death. They also showed that silencing NLRP1 and caspase-1 in APP/PS1 

mice reduced cell death in the cortex and hippocampus, and improved spatial learning and memory in 

these animals. Therefore, proposing a role of NLRP1 in AD pathology via neuronal pyroptotic cell 

death, synaptic loss and subsequent cognitive decline. However, Kaushal et al. (73) identified a novel 

NLRP1/caspase-1/caspase-6 pathway, demonstrating that activation of NLRP1 mediates caspase-1 

activation which: (i) cleaves IL-1β, (ii) activates caspase-6 and subsequent caspase-6 associated 

axonal degeneration and, (iii) increases the ratio of Aβ42 to total Aβ proteins. Despite proposing 

different hypotheses both groups have identified an important role for NLRP1 activation in neurones 

and axonal degeneration in AD, further highlighting an area of interest to elucidate its exact role. It is 

important to note there are fundamental differences in NLRP1 between mice and humans. Rodents 

express three paralogous NLRP1 genes where as humans only express one, and there are structural 

differences in the death domains (164). Furthermore, a genetic association between NLRP1 and AD 

has been proposed due to the identification of 4 non-synonymous polymorphisms in the NLRP1 gene 

which confer an increased risk for the development of AD (123). 

A role for the NLRC4 inflammasome in AD pathology has been identified in response to the fatty acid 

palmitate in astrocytes. Lui et al. (88) demonstrates that NLRC4 is activated and IL-1β is secreted in 

palmitate treated primary astrocyte cultures, and furthermore NLRC4 and ASC are upregulated in AD 

brains. Lui et al. (88) also showed that conditioned media from palmitate treated astrocytes increases 

the expression of BACE-1 and production of Aβ42 in neurones. This is of significant interest because 

fatty acid metabolism has been identified as a risk factor for AD development (114) and there is a 

higher fatty acid content in AD brain compared to healthy controls (136).  

 

Targeting the inflammasome for AD 

The processes involved in IL-1β secretion and signalling can be pharmacologically targeted at a 

number of locations in the pathway (reviewed by Baldwin et al. (10)). Recently, our group were the 

first to successfully pharmacologically target the NLRP3 inflammasome in animal models of AD (35). 

We screened NSAIDs for activity on NLRP3 activation in vitro and found that the fenamate subclass 

selectively inhibited NLRP3 inflammasome formation. The target was established to be the inhibition 

of the membrane ion channel VRAC. Treatment with the fenamate mefenamic acid was then found to 

abate memory deficits seen in a rat amyloid oligomer injection model and APPSwe, PS1M146V, and 

tauP301L (3xTgAD) mouse model of AD (35). Previous research has shown that mefenamic acid can 

reduce amyloid toxicity in neuronal cultures and abate memory deficits in rats infused with amyloid 

monomers (70). Furthermore, the fenamate tolfenamic acid, which is structurally very similar to 

mefenamic acid, has been found to be therapeutic in the APPSwe R1.40 mouse model of AD, lowering 

plaque burden, tau pathology and cognitive deficits (4,153,154). It was proposed that tolfenamic acid 

was therapeutic through the inhibition of the gene regulator specificity protein 1 (SP1). However, 

similar therapeutic effects in similar animal models of AD were seen solely from the genetic deletion 

of the NLRP3 inflammasome and the inflammasome adapter molecule ASC, suggesting that inhibitory 

activity of fenamates on NLRP3 activation could exclusively explain their efficacy (33,53,56). 
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Collectively, this evidence demonstrates that through NLRP3 inhibition and other potential 

mechanisms, fenamates have been found to be therapeutic in four animal models of AD and are 

therefore a promising potential therapeutic in AD.   

 

Pharmacologically inhibiting cell surface receptors which induce IL-1β expression may prove difficult 

in AD due to the diversity of the receptors involved. TLR2, TLR4, CD36 and IL-1R1, have all been 

implicated in AD associated neuroinflammation. Therefore, a polypharmacy approach would be 

required, increasing the potential of off-target effects, as discussed below. Downstream of these 

receptors is the intracellular adaptor molecule MyD88, which is essential for TLR2, TLR4 and IL-1R 

signalling and may therefore be a promising target in AD. Genetic deletion of MyD88 has been found 

to reduce plaque load and abate neuroinflammation in the APP/PS1 mouse model of AD (85). 

However, MyD88 remains a controversial target for AD with further studies showing that MyD88-/+ 

mice having accelerated AD pathology and memory deficits in the APP/PS1 mouse model (103). This 

may be due to the MyD88 receptor family being integral to the beneficial phagocytotic response by 

microglia (47,103,134). The MyD88 receptor family induce transcriptional changes through 

transcription regulator of NFκB, however, targeting NFκB in AD is unlikely to be successful due to the 

broad range of processes and genes that NFκB regulates (112). For example NFκB expression and 

activation is upregulated during synaptic activity and this has been shown to be essential for 

long-term potentiation (LTP), an essential process in learning and memory (5,102). An additional 

problem for targeting TLRs, MyD88 and NFκB in AD is that these proteins are essential for host 

response to infection and therefore the chronic inhibition needed to treat AD may render the patient 

susceptible to infection (89,131,138,159). Conversely, the NLRP3 inflammasome is primarily 

activated by sterile stimuli. Furthermore, the minimal effect of genetic deletion of NRLP3 on infection 

has led to the proposal that inflammasomes are largely redundant in vertebrate adapted pathogens 

(94). This suggests that chronic inhibition of inflammasomes, particularly the NLRP3 inflammasome, 

would not greatly affect the susceptibility of patients to infection, making inflammasomes an excellent 

target for AD. 

 

There are multiple cell pathways that act as the secondary stimulus in inflammasome activation and 

these may provide an attractive target for pharmacological intervention in AD. The P2X7 receptor is 

activated by extracellular ATP which is released upon cell death and leads to NLRP3 inflammasome 

stimulation via K+ efflux. Evidence is building that amyloid mediated NLRP3 inflammasome activation 

is dependent on the P2X7 receptor (116,139). This is supported by research which demonstrated that 

pharmacological intervention with P2X7 antagonists were found to be therapeutic in a rat amyloid 

injection model (139). Yet again there is an issue with off target effects due to the P2X7 receptor 

having a range of functions on a range of cell types including neurones, astrocytes and 

oligodendrocytes. However, evidence is building that activation of the P2X7 receptor is pathologically 

elevated in AD in multiple cell types which leads to amyloidogenic APP processing. This suggests that 

P2X7 inhibition remains an attractive target in AD with multiple therapeutic mechanisms (37,151).  

 

Page 11 of 28

Brain Pathology Editorial Office, Blackwell Publishing, Oxford, UK

Brain Pathology

This article is protected by copyright. All rights reserved.



Phagosomal stress causes the release of cathepsin B into the cytosol where it activates the NLRP3 

inflammasome. Amyloid fibrils have been shown to induce phagosomal stress causing NLRP3 

activation through a cathepsin B dependent mechanism. There is evidence that cathepsin B’s role in 

NLRP3 activation involves both the prototypical NLRP3 activation stimulus of K+ efflux (53,106) as 

well as the cathepsin B dependent degradation of NLRP10 which acts as an inhibitor of NLRP3 

activation (107). Targeting cathepsin B has been successful in animal models of AD with research 

demonstrating that administration of the cathepsin B inhibitor CA074Me is therapeutic in the APPLon 

mouse model of AD (63). However, there is evidence that cathepsins play an important role in 

amyloid degradation (165), therefore further research is required to evaluate the potential of 

cathepsins as a putative therapeutic target in AD.  

 

Downstream from inflammasome activation there are a number of potential therapeutic targets 

including caspase-1 activation and signalling at the IL-1R1 receptor. Neither, caspase-1 or IL-1R1 

have been pharmacologically targeted in animal models of AD. However, genetic deletion of 

caspase-1 has been shown to increase amyloid phagocytosis in isolated microglia and reduce 

neuroinflammation following striatal amyloid injections in mice (53,56). Therefore, there is some 

evidence that this approach is worth pursuing. Conversely, evidence for IL-1R1 antagonists as 

therapeutic in AD does not appear promising. IL-1R1 KO mice have cognitive deficits, suggesting that 

chronic inhibition of IL-1R1 may have detrimental effects in AD (9). Possible causes for the cognitive 

effects of IL-1R1 inhibition include: (i) the need for low levels of IL-1 signalling to promote 

phagocytosis of extracellular debris (9), (ii) the critical role of neuronal IL-1R1 signalling in LTP 

induction (137) and (iii) the role of IL-1 signalling in synapse formation through IL1RAPL1 (interleukin-

1-receptor accessory protein like 1) mediated JNK activation pathway (117). Targeting IL-1R1 also 

has the additional drawback of having no effect on caspase-1 dependent pyroptosis. Therefore, there 

will continue to be microglial death, resulting in the release of damaging cell contents, and fewer 

microglia to perform important functions independent of inflammation. Due to these limitations, 

inhibition of IL-1R1 is not the preferred therapeutic strategy of inflammasome dependent AD 

pathology. 

 

Targeting the molecular and physiological processing directly involved in inflammasome formation is 

the optimal approach for limiting the negative effects of IL-1β signalling in AD. Inflammasome specific 

approaches would have limited side-effects and would not greatly impact the patients’ resistance to 

disease. However, there are currently no drugs which have been conclusively shown to directly inhibit 

inflammasome formation. Several approaches could be taken in drug design including: (i) inhibiting 

NLRP3-NEK7 binding (55), possibly by targeting NEK7 phosphorylation (145); (ii) targeting NLRP3 

ubiquitination status by augmenting specific ubiquitin ligases activity or blocking deubiquitinases 

(71,92), although this approach may have potential off target effects due to the many roles of the 

ubiquitin system; (iii) inhibiting the phosphorylation of the NLRP3 protein (152); (iv) or targeting the 

PRR-ASC, ASC-ASC, or ASC-caspase interaction sites directly (141). Currently, there are existing 

inflammasome inhibiting drugs available where the mechanism of action has not fully been elucidated 
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and may involve targeting the processes mentioned above or an unknown regulatory system of 

inflammasome formation. The drugs include: (i) 3,4-methylenedioxy-β-nitrostyrene (MNS) which has 

been shown to alter cysteines on the NLRP3 protein itself and this may alter NLRP3-NEK7, NLRP3-

NLRP3, or NLRP3-ASC associations; (ii) MCC950 (CP-456773) is also a potent inhibitor of NLRP3 

activation whose mechanism of action has been shown to be down stream of potassium efflux but 

does not alter NLRP3-ASC or ASC-ASC binding, possibly implicating NLRP3-NEK7, NLRP3-NLRP3, 

ubiquitination or phosphorylation as potential mechanisms of action (29). There are continuing efforts 

to develop novel inflammasome inhibitors using screening and structure based molecular modelling 

techniques to target inflammasome formation and these will provide a diverse set of tools to further 

investigate the role of inflammasomes in a range of diseases including AD.  

 

Conclusion 

It is now clear that inflammation plays a fundamental role in the pathophysiology of AD. 

Neuroinflammation in AD is mediated through a number of PRRs including cell surface receptors such 

as TLR2 and TLR4, as well as cytosolic receptors, of which the NLRP3 inflammasome has been 

found to be central. Consequently, inflammasomes are an attractive therapeutic target for AD and 

have multiple points in the activation pathway which can be inhibited. Due to non-specific effects and 

complicated interactions with AD pathology targets upstream of inflammasome formation, such as 

TLR4 and cathepsin B, may not be preferable as a chronic pharmacological intervention strategy 

required for AD. Similarly, targeting IL-1R1 may have negative effects of cognition and AD 

progression due to the essential role of basal IL-1 signalling in brain parenchyma maintenance. 

However, the NLRP3 inflammasome is an attractive pharmacological target as inhibition would 

specifically abate pathological inflammation without altering basal microglia function or leaving the 

patient overly susceptible to infection. No drugs have currently been established to directly bind and 

inhibit the NLRP3 inflammasome, however, the essential processes for NLRP3 activation of VRAC 

activation has been targeted using currently indicated fenamate NSAIDs and these were found to be 

therapeutic in four separate animal models of AD (35,68,153). However, fenamate NSAIDs are also 

COX inhibitors and potentially have other effects on APP expression and cleavage (72). The 

challenge for the field now is to develop non-toxic and specific inflammasome inhibitors to fully 

elucidate the therapeutic potential of targeting this pathway in AD.  
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Figure 1. Inflammation has an integral role in the pathogenesis of AD and can be influenced through 

a number of genetic and environmental factors. Amyloidopathy has been demonstrated to induce 

neurotoxic inflammation which has been shown to cause and propagate tauopathy. Neuronal damage 

caused by these processes could result in further inflammation in an unresolved feedback pattern. 

Many risk factors for AD such as inflammatory gene variants, brain injury, midlife obesity, diabetes, 

ageing and infection all have an inflammatory component; this supports the critical role inflammation 

has in AD and highlights the therapeutic potential of targeting inflammation.  

Figure 2. Amyloid oligomers and monomers cause the expression of NLRP3 and proIL-1β through 

TLR mediated NFκB activation. The NLRP3 inflammasome is then activated by amyloid oligomers 

and fibrils through phagosomal disruption or cell surface K+ channels. Both pathways result in K+ 

efflux and cell swelling leading to Cl- efflux through VRAC. This, through an unknown mechanism, 

leads to deubiquitination of NLRP3 and ASC, and the binding of NEK7 to NLRP3 resulting in NLRP3 

inflammasome activation. The NLRP3-ASC speck then recruits and activates caspase-1 which then 

cleaves gasdermin D and proIL-1β into their active forms. The N-terminus cleavage product of 

gasdermin D then forms pores in the cell membrane allowing the leaderless IL-1β to leave the cell.   
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