A SIMPLE APPROACH TOWARDS RECAPTURING CONSISTENT
THEORIES IN PARACONSISTENT SETTINGS

JC BEALL
University of Connecticut
and
Northern Institute of Philosophy, University of Aberdeen

Abstract. I believe that, for reasons elaborated elsewhere (Beall, 2009; Priest, 2006a, 2006b),
the logic LP (Asenjo, 1966; Asenjo & Tamburino, 1975; Priest, 1979) is roughly right as far as
logic goes.1 But logic cannot go everywhere; we need to provide nonlogical axioms to specify
our (axiomatic) theories. This is uncontroversial, but it has also been the source of discomfort for
LP-based theorists, particularly with respect to true mathematical theories which we take to be
consistent. My example, throughout, is arithmetic; but the more general case is also considered.

§1. Theories and logical closure. The problem, in short, arises as follows. Take the
axioms of PA. Close under logic: namely, LP. Trouble: it is at least unclear whether the
resulting theory is as strong as PA. What we want is that it is as strong as PA.2 But without
material modus ponens (or, equivalently, disjunctive syllogism) the resulting theory is
likely not as strong. What we want to do is ‘recapture’ the consistent theory; we want
to ‘recapture’ the consequences of LP-invalid rules such as (material) modus ponens and
disjunctive syllogism.

§2. One route: on the cheap? One route is to be up front. In particular, those who
take LP to be ‘the one true logic’ may nonetheless recognize limited roles for the classical
closure operator. Specifically, one may specify one’s theory by listing the PA axioms and
invoking the classical operator (i.e., classical logic) for the closure role: one’s theory of
arithmetic is simply PA axioms closed under classical logic—and that’s an end on it.
Nothing in this approach strikes me as philosophically inappropriate. Simply because
one thinks that the true logic—the logic over the whole of one’s language—is subclassical
does not mean that one thereby has forewarned all use of the classical closure operator. After
all, closure operators are useful for specifying theories; and logic (i.e., true logic) may not
always be the best suited (e.g., may be too weak) for closure over a proper theory in one’s
language. What one has forewarned, in championing LP as the one true logic, is simply that
classical consequence is logic—that it is (let me say) truth-preserving across all sentences
over all (relevant) points (etc.).

Received: June 10, 2013.
1 Familiarity with LP and its standard model theory is assumed (see Beall & van Fraassen, 2003;
Priest, 2008). An appendix very briefly rehearses the ‘semantics’ for LP.
2 I am assuming, throughout, that we have no (ultimately persuasive, etc.) reason to think that the
axioms of PA in fact describe an inconsistent phenomenon. This can, and has been, questioned
(Mortensen, 1995; Priest, 2006b); however, my point is a general one about ‘recapturing
consistent theories’, and not so much about which theories are, in the end, truly consistent.
While there might not be anything philosophically improper with the invoke-classical-closure approach, different courses have in fact been pursued, including the addition of new logical vocabulary (e.g., new detachable conditionals) (Priest, 1980, 2006b; Weber, 2010), or beefing up the logic by restricting attention to certain models (Priest, 1991, 2006b), or generalizing to multiple-conclusions framework and relying on extra-logical principles to recover the otherwise lost arithmetic truths (Beall, 2011; Beall, 2013a, 2013b; Belnap & Dunn, 1973; Priest, 2006b). While all such approaches may—probably do—have their (dis-) advantages, I turn to a simple idea, one that works even in detachment-free languages (Beall et al., 2011).

Historical note on the target idea. The target (‘shrieking’) idea, though independently discovered, is related to the approach in Beall (2011, 2013a) and, as Graham Priest conveyed in correspondence, finds direct roots in Priest’s earlier work (Priest, 2006b, 8.5). Priest’s approach is less economical than the suggestion here (e.g., Priest’s approach applies to all formulæ full stop), and it is couched in a language with a detachable conditional. As I show below, the core idea is simpler and, importantly, applies even in ‘detachment-free’ languages, that is, languages with no modus-ponens-satisfying conditional (Beall et al., 2011).

The spirit of ‘shrieking’ (so to speak) also has the spirit—though not the letter—of the da Costa tradition of adding consistency operators (da Costa & Alves, 1977). One big difference (at least in letter) is that we are adding rules (nonlogical rules) to specific theories; we are not adding new logical vocabulary—and, hence, elementary (logical) vocabulary of all theories in your language—in the tradition of da Costa’s negation(s) operators. (And this can make a difference to target applications—for example, truth theories, property theories, etc. In particular, adding new logical vocabulary can bring back more than you want: it can bring back, perhaps through the back door, the very same paradoxes and problems that motivated the initial drop to a weaker-than-classical logic. This is a well-known issue in applications of paraconsistent logic to gluttyness theories. See, for one example, the discussion of Curry’s paradox and ‘incoherent operators’ in Beall, 2009, chap. 2–3.)

Finally, the Asenjo–Tamburino logic (Asenjo & Tamburino, 1975), discussed by Beall (2013), also reflects a similarity in spirit: the idea there is to explicitly cordon off parts of the language as not susceptible to gluts (to truths with true negations). This approach, as with that of da Costa, winds up multiplying the logical vocabulary, rather than seeing the issue of ‘essential nongluttyness’ as something theory-specific or extra-logical, as I see it in the shrieking method advanced in this paper. *End note.*

§3. Shrieking theories: the basic idea. I focus on PA axioms, but the idea, with some qualifications, has applications to any axiomatic theory over domains we take to be ‘nongluttyn’ (i.e., over domains whose true theories are negation-consistent) – almost all domains, by my lights (Beall, 2009), but I leave that debate for elsewhere.

3.1. Nonlogical (shriek) rules. Unlike the case of (dual) paraconsistent theories, there are no new axioms that we can add to the PA axioms that serve to ‘recapture’ target consistency. But axiomatic theories are a combination of axioms and rules that, jointly with the underlying logic (in our case, LP), make up the theory’s closure operator. Because LP itself is too weak for target theories (say, PA), we want to add (nonlogical) rules that, in effect, capture the target ‘nongluttyness’ of the axioms while ‘recapturing’ the classical consequences. Throughout, I use ⊢ for LP consequence itself (see appendix for brief
review) and \vdash_T for stating the proposed nonlogical rules – or, in effect, for the given theory T’s resulting closure operator (the given rules plus the background logic LP).

Let $\alpha!$, pronounced ‘α shriek’, abbreviate $\alpha \land \neg \alpha$. The idea: arithmetic is simply achieved by taking the PA axioms and adding ‘shriek rules’. Specifically, for each axiom α we add the $\alpha!$ rule:

$$\alpha! \vdash_T \bot.$$

Such rules, together with the underlying logic (viz., LP), which governs all logical vocabulary occurring in such rules, make up the target closure operator for theory T (in the current case, PA). Such shriek rules are not, of course, logical rules; they’re nonlogical, theory-specific rules motivated by the (presumed-to-be-consistent) domain in question. As noted in §§2., there’s nothing – in principle – that bars adding whatever nonlogical rules one pleases; but the shriek rules, attached to specific axioms (or more), enjoy a prima facie elegance that might not be shared by alternative choices of nonlogical rules.

Some phenomena are ‘glutty’, in that their true theory is (negation-) inconsistent. Some phenomena are nonglutty – for example, arithmetical reality. What motivates the shriek rules is the desire to be up front, in the basic formulation of the axiomatic theory (the rules and axioms), that the target phenomena are nonglutty. In explosive logics (e.g., classical, intuitionistic) such shrieking is unnecessary; it’s already going on ‘silently’ in the logical rules. In some theoretical contexts, perhaps only a proper subset of axioms are to be shrieked; but I concentrate here on the simplest case of a consistent theory.

3.2. PA: Call an axiomatic theory fully shrieked just when all axioms enjoy shriek rules. A theory is shrieked (simpliciter) just if some axiom is shrieked. And so on. We concentrate here on fully shrieked PA, where the only (primitive) predicate is identity.

Let the fully shrieked PA theory (i.e., PA axioms closed under LP and shriek rules for all axioms) be PA!. In turn, an LP model of PA, and similarly LP models of PA!, are defined standardly (Mortensen 1995; Priest 2006b). Throughout, we use ‘model’ for ‘LP model’ (with the ‘LP’ implicit); and, given a model, P^+ and P^- are the extension and antiextension of predicate P, respectively.

Definition (Consistent models). Let D^n be the n-fold product of M’s domain D. We say that a model M of theory T is consistent just if $P^+ \cap P^- = \emptyset$ for all predicates P in the language of T. A model of T is an inconsistent model of T iff $P^+ \cap P^- \neq \emptyset$ for some predicate P in the language of T.

Definition (Consistent theories). A theory T is consistent just if negation-consistent; and T is inconsistent iff negation-inconsistent.

Definition (Trivial models). Let D^n be the n-fold product of M’s domain D. We say that a model M of theory T is trivial just if $P^+ \cap P^- = D^n$ for all predicates P in the language of T. A model of T is a nontrivial model of T iff it is not a trivial model of T.

Definition (Trivial theories). We say that a theory T is trivial just if T contains all sentences of the language of T. We say that a theory T is nontrivial iff T is not trivial.

3 ‘$\alpha!$’ is also sometimes pronounced ‘α bang’, but the ‘shriek’ terminology sounds slightly more natural – and less aggressive.

4 NB: models treat identity as regular: $M \models_t Id(t_1, t_2)$ iff $\delta_M(t_1) = \delta_M(t_2)$, where \models_t is the truth relation, δ denotation, and Id the identity predicate. (See the appendix for brief review.)
THEOREM 3.1. Every nontrivial model of PA$_1$ is consistent.

Proof. We show the contrapositive.\footnote{I am grateful to Greg Restall for discussion of this short proof idea in the case of PA$_1$.}

FACT. A model of PA$_1$ is inconsistent iff $P^+ \cap P^- \neq \emptyset$ for some predicate P in the language of PA.

And since the only predicate in the language of PA$_1$ is identity, we have an immediate corollary:

COROLLARY. A model M of PA$_1$ is inconsistent iff inconsistent wrt the identity predicate (viz., Id) iff for some terms t_1 and t_2 we have $M \models Id(t_1, t_2)$ and $M \models \neg Id(t_1, t_2)$, and so iff $M \models Id(t_1, t_2)$ and $M \models Id(t_1, t_2)$.

Now, suppose that M is an inconsistent model of PA$_1$, and so $M \models Id(t_1, t_2)$ and $M \models Id(t_1, t_2)$ for some terms t_1 and t_2; and so $(\delta_M(t_1), \delta_M(t_2)) \in Id^+$ and $(\delta_M(t_1), \delta_M(t_2)) \in Id^-$. Since, by regularity of identity, $\delta_M(t_1) = \delta_M(t_2)$, we also get that $(\delta_M(t_1), \delta_M(t_1)) \in Id^-$. This, together with addition axioms (or, similarly, multiplication axioms) delivers the result. In particular, axiom

\begin{itemize}
 \item \textbf{Add.} $\forall x Id(x + 0, x)$
\end{itemize}

implies that $M \models Id(t_1 + 0, t_1)$. Regularity gives that $\delta_M(t_1 + 0) = \delta_M(t_1)$. But since $(\delta_M(t_1), \delta_M(t_1)) \in Id^-$, we have that $(\delta_M(t_1 + 0), \delta_M(t_1)) \in Id^-$, which implies that $M \models Id(t_1 + 0, t_1)$. Hence, as one of Add’s instances is false-in-M, we have that $M \models \forall x Id(x + 0, x)$, and so $M \models \neg \forall x Id(x + 0, x)$. But, now, Add’s shriek rule delivers \bot. Triviality.

\textbf{Upshot.} Since, almost by definition, every consistent LP model of PA$_1$ is a classical model of PA$_1$ (and vice versa), Thm 3.1 delivers:

THEOREM 3.2. Every nontrivial LP model of PA$_1$ is a classical model of PA$_1$.

Are there classical models of PA$_1$? Yes:

FACT. M is a classical model of PA$_1$ iff M is classical model of PA.

Proof. PA$_1$ differs from PA only in ‘adding’ (as nonlogical) the shriek rules; but such rules are already (logical) rules in classical PA. \hfill \Box

Hence, despite the invalidity of modus ponens and disjunctive syllogism (and more), LP-based glut theorists can ‘recapture’ consistent arithmetic via shrieking.\footnote{It is worth noting that the trivial model M_1, can be added to the class of classical models without affecting classical logic. (Of course, if M_1 is added, it will be the unique inconsistent classical model.) On this approach, the foregoing results deliver that the models of PA$_1$ are precisely the classical models.}

Not surprisingly, the answer depends on the shape of theory. In the case of PA, we have exactly one predicate available, and hence exactly one avenue towards gluttiness: namely, glutty identity. Moreover, the shape and content of the PA axioms afford a simple ‘classical
recapture ' via shrieking. Things might not always be so simple. Still, the basic shrieking idea does generalize.

Let us suppose that we take a domain (or phenomenon) to be consistent; we take its true theory to be the sort of theory for which 'classical recapture' makes sense. Suppose that we aim to give the phenomenon an axiomatic theory. In taking the given domain to be consistent, we reject that the true axiomatic theory is inconsistent; we reject that there are predicates of the theory's language that deliver gluts. But how does our theory reflect this?

We cannot add axioms to the theory that force it to be consistent; but we can add appropriate shriek rules. In particular, piggy-backing on Beall (2013b), define a predicate P's shriek rule thus:

$$\exists x_1, \ldots, \exists x_n (P x_1, \ldots, x_n \wedge \neg P x_1, \ldots, x_n) \Downarrow$$

Shrieking all predicates in the language of one's theory suffices to ensure the analogue of Theorem 3.1: namely, that the only nontrivial models of the theory are consistent (indeed, classical) models.8

§5. Philosophical question and reply. Why think that a given phenomenon—say, arithmetic—is in fact glut-free?9 Why think that its theory should be fully shrieked? After all, once we have embraced a paraconsistent logic, are we not now open to the possibility of many gluts—many truths whose negations are also true?

Reply. My own view—though, I admit, perhaps not the view of some of the more famous or outspoken glut theorists (Priest, 2006a, 2006b; Routley, 1979, 1993)—is that we know that the 'nonsemantic world' (if you will) is glut-free, and as yet have no reason to doubt as much. As broad background epistemology, I subscribe to so-called epistemic conservatism in the spirit (though not letter) of Reid (1997) and some of the contemporary pragmatists, including Harman (1986):10 we are (at least prima facie) justified in maintaining what we accept and reject until we have some special reason to change. And with the vast majority of thinkers, I see no good reason to accept that the nonsemantic realm (arithmetic, physics, etc.) might be hiding some metaphysical 'glutty' (contradictory) nature. The paradoxes, I maintain, give us special reason to drop to a subclassical logic; but they do not thereby give us reason to suspect that every domain, every phenomenon, is potentially glutty. The only inconsistencies are the bizarre but well-known semantic paradoxes, which are simply 'spandrels of truth' that have no significant metaphysical consequences (Beall, 2009).11 Pending good reason to doubt as much, I maintain that our true theories of arithmetic—and theories involving nonsemantic predicates generally—are to be properly shrieked.

7 Correspondence with Greg Restall sharpened my thinking on this point. Zach Weber also raised a worry about how the method is to be generalized.
8 Again, treating M_{\uparrow} as a classical model removes qualifications about nontrivial models (though this is simply a terminological point).
9 I am grateful to an anonymous referee for prompting me to at least flag this issue. More can be said, but I simply give the issue and basic direction of my reply here.
10 See too William Lycan's (1988) work, though this is a very minimal version of epistemic conservatism.
11 The semantic version of Russell–Zermelo's paradox is also a spandrel of truth, though a spandrel of the predicate 'true of' (e.g., every predicate is true of some property which is exemplified by all and only the objects of which the predicate is true). I leave the 'spandrel of truth' account for another venue.
§6. Closing remarks. The general shrieking method involves three steps:

1. Set out one’s axioms.
2. Add nonlogical shriek rules—either shrieked-axiom rules or, more fundamentally, shrieked-predicate rules.
3. Close under the resulting closure operator: LP plus shriek rules.

Whether the target result is equivalent to the classical closure of one’s axioms depends on the level of shrieking. If one shrieks all predicates of the theory (i.e., of the theory’s language), one has the analogue of Theorem 3.1 for the theory. If one shrieks only the axioms (either some or all), one will, in general, achieve a stronger-than-LP theory that wears its consistency commitments on the sleeves of the theory.

With LP, as with other subclassical paraconsistent logics, our axiomatic theories do not show consistency commitments via new axioms; they show it via shriek rules, at least on one natural approach—as I hope to have shown.\footnote{Acknowledgements and updates. The idea in this paper emerged in conversation with Graham Priest on Wormwood Hill Road in Connecticut as we were discussing Nick Thomas’ (unpublished) approach towards ‘recapturing consistent theories’ (Thomas, 2012). I am grateful to Greg Restall for encouraging and very useful comments on a first draft, and to Nick Thomas who sketched proofs of equivalence of the fully shrieked PA system (viz., PA\(_1\)) and his ‘congruence system’ for PA. Thanks too to Dave Ripley and Zach Weber for comments, and to Michael Hughes for spotting infelicities in a late draft; and thanks very much to two anonymous referees for useful comments. Since the time of its writing, I have applied the ideas in this paper to various issues in the philosophy of logic and glut theory (Beall, 2013a, 2013c).}

Appendix

This appendix offers a very brief rehearsal of the ‘semantics’ of \(\text{LP}\).\footnote{I am grateful to an anonymous referee for suggesting the inclusion of this appendix.} A fuller discussion is available in many places (e.g., Beall & van Fraassen, 2003; Priest, 2008). This presentation duplicates some of the presentation in Beall \textit{et al.} (2013), though adds a translation of the \(\models_t\) and \(\vDash_t\) relations used in the body of the current paper.

A. First-order LP (with identity). LP (Asenjo, 1966; Asenjo & Tamburino, 1975; Priest, 1979) is dual to K3 (Kleene, 1952), both proper sublogics of classical logic (i.e., anything valid in such sublogics is valid in classical logic, though the converse fails). I focus on a common model-theoretic account of LP.

A.1 LP syntax. We assume a standard first-order syntax without identity (I discuss identity below in section §A.5), taking \(\forall\) and \(\neg\) and \(\vee\) as our primitive connectives (defining \(\exists\) and \(\land\) and \(\supset\) in the usual way).

A.2 LP ‘semantics’. An LP model \(M\) consists of a nonempty domain \(D\), a denotation function \(\delta\), and a variable assignment \(v\), such that:

- for any constant \(c\), \(\delta(c) \in D\),
- for any variable \(x\), \(v(x) \in D\),
- for any \(n\)-ary predicate \(P\), \(\delta(P) = (P^+, P^-)\), where \((P^+, P^-) \subset \wp(D^n)\) such that \(P^+ \cup P^- = D^n\). (We say that \(P^+\) and \(P^-\) are the extension and antiextension of \(P\), respectively.)
$|\varphi|_o$ is the semantic value of formula φ w.r.t. variable assignment o. This is defined recursively in familiar fashion, where $d(i)$ is $\delta(i)$ or $\upsilon(i)$, depending, as usual, on whether i is a constant or variable. For atomics:

$$|Pt_0, \ldots, t_n|_o = \begin{cases} 0 & \text{if } \langle d(t_0), \ldots, d(t_n) \rangle \not\in P^+ \text{ and } \langle d(t_0), \ldots, d(t_n) \rangle \in P^- \\ 1 & \text{if } \langle d(t_0), \ldots, d(t_n) \rangle \in P^+ \text{ and } \langle d(t_0), \ldots, d(t_n) \rangle \not\in P^- \\ \frac{1}{2} & \text{otherwise.} \end{cases}$$

The inductive clauses are as follows:

1. $|\varphi \lor \psi|_o = \max\{|\varphi|_o, |\psi|_o\}$.
2. $|\neg \varphi|_o = 1 - |\varphi|_o$.
3. $|\forall x \varphi|_o = \min\{|\varphi|_{o'} : o' \text{ is an } x\text{-variant of } o\}$.

Conjunction and existential quantification can be defined from these in the normal way.

A.3 Truth and falsity relations. Other notation, used in section §3.2., is available for truth in a model and falsity in a model. These simply amount to satisfaction and satisfaction-of-negation. In particular, we define the following.\footnote{I give this notation only because I use it in the main body of the paper; it does not add anything to the foregoing semantics.}

Definition (Truth in a model). Let A be a sentence. Then $M \models A$ iff $|A|_o \in \{1, .5\}$ for all variable assignments o.

Definition (False in a model). Let A be a sentence. Then $M \models A$ iff $|A|_o \in \{.5, 0\}$ for all variable assignments o.

We say that a sentence A is true in a model M just when $M \models A$, and false in a model M just when $M \models \neg A$. In LP (and similar paraconsistent logics), we can have some sentence A and model M such that A is ‘glutty’ (both true and false) with respect to the model: $M \models A$ and $M \models \neg A$. A simple example is an atomic Pc such that $\delta_M(c) \in P^+ \cap P^-$.\footnote{There is no need, in principle, to do this; but it simplifies presentation. See any of the cited sources for a fuller account.}

A.4 LP validity/consequence. We restrict the consequence (or validity) relation to sentences.\footnote{As discussed above, LP and K3 are strict duals, which comes up very nicely in the multiple-conclusion versions LP$^+$ and K3$^+$, where, for example, each logic enjoys exactly one of the following ‘dual’ patterns: $A, \neg B \vdash A$ and $B \vdash \neg A$. Discussion of LP$^+$, with some discussion of K3$^+$, may be found in Beall (2013b).}

Definition (LP consequence). Let A be a sentence, and X a set of sentences. $X \vdash A$ iff there’s no LP model in which everything in X is true and yet A is not true, that is, no model M such that $M \models B$ for all sentences B in X but $M \not\models A$.

LP consequence is paraconsistent: $A, \neg A \not\vdash B$. A counterexample is suggested in section §A.3. LP is not ‘paracomplete’, that is, excluded middle holds: $B \vdash A \lor \neg A$ (proof: exercise).\footnote{As discussed above, LP and K3 are strict duals, which comes up very nicely in the multiple-conclusion versions LP$^+$ and K3$^+$, where, for example, each logic enjoys exactly one of the following ‘dual’ patterns: $A, \neg B \vdash A$ and $B \vdash \neg A$. Discussion of LP$^+$, with some discussion of K3$^+$, may be found in Beall (2013b).}
A.5 Adding identity. We augment the standard syntax with a unary (identity) predicate \(I d \). In LP, \(I d \) is treated as regular, which means that we constrain our models—what counts as an LP model—to those that treat identity statements \(I d(t_1, t_2) \) as true just when the given objects are truly identical:

\[
M \models I d(t_1, t_2) \iff \langle t_1, t_2 \rangle \in I d^+ \iff \delta(t_1) = \delta(t_2).
\]

The difference between identity in LP and identity in classical (and other standard) settings is that we can have ‘glutty’ identity claims: both \(I d(t_1, t_2) \) and \(\lnot I d(t_1, t_2) \) being true in a model.\(^{17}\) In other words, while the regularity of identity demands that identity claims be true iff the given pairs of objects are identical, such identity claims can also be false—as an independent matter. (I am not arguing for this; I am simply presenting the treatment of identity relevant to the discussion in the paper.) In particular, we allow the antiextension of \(I d \) to be free of constraints and simply retain the standard falsity clauses:

\[
M \models \lnot I d(t_1, t_2) \iff \langle \delta(t_1), \delta(t_2) \rangle \in I d^-.
\]

Accordingly, a pair of objects can be in the antiextension of \(I d \) even if also in the extension of \(I d \), or it may be treated ‘classically’ by some models—a pair in exactly one of the extension and antiextension. This raises a notable point about classical models.

A.6 LP models and classical models. What should be plain is that LP models properly include all classical models. In particular, the only difference between classical models and LP models is that the former obey an exclusion condition on all predicates \(P \), namely:

\[P^+ \cap P^- = \emptyset \]

LP drops the exclusion clause; otherwise, LP models are exactly in line with classical models. In short: whatever counts as a classical model counts as an LP model; it is just that there are more things that count as LP models—namely, those otherwise classical models that transgress the exclusion condition for some predicate or other.

A.7 A note on FDE. Finally, it is worth noting that another prominent (proper) sub-classical, paraconsistent logic is FDE (Anderson & Belnap, 1975; Anderson et al., 1992), for ‘first-degree entailment’ or, sometimes, ‘logic of tautological entailments’.\(^ {18}\) This logic is a sort of combination of K3 and LP, being weaker than each one. Formally, one drops the requirement on LP models that \(P^+ \cup P^- = D^n \) for each \(n \)-ary predicate, allowing some predicates to have empty extensions and antiextensions.

A salient difference between FDE and LP is that the latter enjoys excluded middle while the former, like K3, does not. (In increasingly standard jargon, both are paraconsistent but only FDE is paraconsistent, since excluded middle holds in LP. Intuitively, paraconsistent logics tolerate negation-inconsistency while paraconsistent logics tolerate negation-incompleteness.) Worth noting, however, is that the shrieking idea applies just as well to FDE, though to ‘recapture’ a fully classical theory one needs to go beyond shrieking; one needs to supplement the closure operator with (nonlogical) rules/axioms that ‘bring back’ excluded middle, etc.

\(^{17}\) Strictly speaking, one can go different ways on this. As usual, adding identity into the mix can be controversial, even among logicians who agree on the underlying (identity-free) logic. But I skip these issues here, and give only a standard account sufficient for understanding the ‘shrieking’ method.

\(^{18}\) I am grateful to an anonymous referee for prompting comments on FDE’s relation to LP and shrieking.
BIBLIOGRAPHY

DEPARTMENT OF PHILOSOPHY
UNIVERSITY OF CONNECTICUT
STORRS, CT 06268

and

NORTHERN INSTITUTE OF PHILOSOPHY
UNIVERSITY OF ABERDEEN
OLD BREWERY, ABERDEEN AB24 3UB
UNITED KINGDOM

E-mail: jc.beall@uconn.edu