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Threshold concepts remain relatively unexplored in mathematics, despite suggestions that the troublesome nature of such concepts pose a critical barrier to student understanding of mathematics. Many studies have identified student difficulties with limits, and their findings point to a strong likelihood that limits do indeed constitute a threshold concept in mathematics. This paper describes the initial results in a study that sought to investigate students’ understanding of limits and differentiation from the prospective of Threshold Concepts. While the findings to date do not provide conclusive evidence for limits as a threshold concept, they do reinforce the troublesome nature of the limit concept, and suggest some important implications for the teaching of limits consistent with previous studies.
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1. Introduction

Threshold concepts were originally proposed by Meyer and Land [9] as a means of understanding, describing and scaffolding student difficulties in a general cross-disciplinary sense. While their discussion explicitly considers examples from mathematics (e.g. Tall’s consideration of limits [15]), Meyer and Land are not mathematicians and their discussion of limits as a potential threshold concept arises from their understanding of Tall’s work [9, 15], not a specific investigation of threshold concepts in mathematics per se. Threshold concepts as described by Meyer and Land [9] have very specific features; they are those concepts that once understood, lead the student to a “transformed way of understanding, or interpreting, or viewing something without which the learner cannot progress” [9, p. 1]. They can also be compared with a one-way door, in that they open up “new and previously inaccessible way[s] of thinking about something” [9, p. 1]; once a student has gone through this door, the subject is transformed for this student. These concepts are commonly identified as troublesome, they may be counter-intuitive, alien, or incoherent to the learner [9, p. 7]. Cornu [4] cites Bachelard [1938], who referred to such topics as epistemological obstacles; topics that obstruct student understanding and by their very nature are difficult.
The limit is one of the fundamental ideas in calculus and is required for a good understanding of both derivatives and integrals [15]. While the formal definition of the limit (the “epsilon-delta” definition) can be learned by rote and used to prove that limits exist, we believe that if students are to truly understand further work in calculus they need to be able to have an intuitive understanding about their nature. Many studies support this conclusion and have considered student difficulties with limits in this respect [4, 5, 10; 14; 17]. As suggested earlier, Meyer and Land [9] indeed suggest that Tall’s consideration of limits [15] points to the concept of a limit as being troublesome and potentially a threshold concept. Certainly limits are “counter-intuitive” in that they may lead a student to imagine dividing by zero (which is not possible), or to imagine dividing areas under graphs into slices that are infinitely small. In addition, a limit may lead to a place in a function that can be defined or undefined [15]. Because of their difficult nature, Davis and Vinner [5] state that in reality misconceptions may be unavoidable as students build their knowledge about limits; therefore overcoming such hurdles may indeed be seen as crossing a threshold.
Whilst there has been considerable work on the misconceptions that students may have about limits and other calculus topics (e.g. [1, 4, 5, 10, 12, 14, 15, 17]), and many textbooks provide ways of addressing these (e.g. [11]), there are few studies into threshold concepts in pure mathematics in general and especially calculus. Several studies have investigated threshold concepts in wider applied mathematical domains (e.g. Computer Science, [2]; Financial mathematics, [6, 7, 8]; Statistics, [3]) but the only studies identified aimed specifically at calculus, while useful here, are either introductory and small scale [13], or within a higher second-level calculus course [18]. There are some studies which examine how students go through the process of gaining understanding when they first meet the formal definition of a limit, differentiation and the Fundamental Theorem of Calculus. Williams [17] for example found that students had an almost ubiquitous view of limit as being unreachable and viewed counter-examples as minor exceptions rather than reasons to abandon incomplete concepts. Oehrtman [10] analysed 120 students' written and verbal descriptions of their thinking about challenging limit concepts. This analysis resulted in a characterisation of 5 clusters of strong metaphors based on the objects, relationships, and logic related to intuitions about (a) a collapse in dimension, (b) approximation and error analyses, (c) proximity in a space of point-locations, (d) a small physical scale beyond which nothing exists, and (e) the treatment of infinity as a number. Students' reasoning with these metaphors had significant implications for the images they formed and the claims and justifications they provided about multiple limit concepts [10, p. 396]. The results and metaphors described in these two studies provide powerful evidence to suggest that limits and differentiation are indeed potential threshold concepts, and give considerable insight into the nature of questions we might ask, and the kind of thinking we might look for in establishing this. 

Thus, given Meyer and Land’s claim that an understanding of threshold concepts can provide rich opportunities for teachers to better design and scaffold their lessons [9], this study aimed to investigate students’ mathematical understanding from the perspective of Threshold Concepts, building on the work of Tall [15] and the metaphors constructed by Oehrtman [10] and Williams [17]. This paper presents the initial results from an exploratory study with students in a first-year calculus course. The study combined questions aimed at identifying current knowledge and revealing potential misconceptions students might hold, with a post-survey interview to see if we could identify the nature of this thinking from a threshold concept perspective, similar to methodologies adopted in other threshold concept studies [2; 3; 13]. In addition to the value of the study in contributing to research in the under-explored domain of threshold concepts, we felt confident that students may well enjoy the questions in the survey, and there would be additional benefits for student participants in reinforcing and consolidating their learning of limits with questions relevant to their first-year mathematics content. 
2. Methods
This research took place at an Australian University. Students in a first-year, first-semester calculus course in the School of Physical Sciences (n=270) were sent information about the study and a link to an anonymous, on-line survey. Out of the total number of students (270) 14 complete surveys were received (5.1%). Because two of the researchers were lecturers of the first-year calculus courses, ethical considerations prevented more than minimal promotion of the project by these lecturers, and all data obtained was withheld from them until the students' final results were published.  However, given that the study was largely exploratory in nature, the low response rate was not seen as unduly affecting the nature of our findings, which we found very interesting, notwithstanding their limited generalizability.
The survey asked the students for their age, gender and to identify the level of their last mathematics studies. The students were also asked a series of questions about the nature of limits and derivatives; these questions are found in Table 1. 
Table 1. Survey questions requiring no explanation (true; false; not seen; forgotten).
	
	Question

	1
	The graph of a rational function, [image: image2.png]h(x) = L2



  does not cross a horizontal asymptote. 

	2
	The graph of a rational function, [image: image4.png]h(x) = L2



 does not cross a vertical asymptote

	3
	The horizontal asymptote of a rational function, [image: image6.png]h(x) = L2



 is given by the limit h(x) as  [image: image8.png]X — 00



; i.e. [image: image10.png]lim, .. h(x)



 if the limit is finite.

	4
	Consider an infinite series a+ar+ar2+… where 
-1<r<1. The sum to infinity of such an infinite series, [image: image12.png]


  is the value the series approaches but never reaches

	5
	If the limit of a function y = f(x) exists as x approached [image: image14.png]a €ER



, then the function must be defined at x=a.

	6
	If a function does not have a value at a point (x,y) on the graph of the function, then the limit also does not exist at that point.

	7
	The limit of a function at a given point (x,y) is a value that the function gets close to but can never reach. 

	8
	The limit of a function is the value for which the function can never exceed.

	9
	The formal definition of the derivative of a function f(x) if it exists, is given by:
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This means that we are looking at the slope of the graph as we get closer and closer to x. 

	10
	The derivative of a function at a point (x,y) is the tangent line to the graph at that point. 

	11
	Consider the function [image: image17.png]Fx) = &



. This function has a limit when x = 4. 

	12
	Consider the function [image: image19.png]Fx) = &



. The derivative of f(x) exists when x = 4. 


For each question shown in Table 1, they had the option of answering: "True", "False", "I have not seen this before", or "I have forgotten how to do this". They were also presented with a number of graphs (see Figure 1 and Table 2) and asked whether or not (a) the graphs had limits for all values of x, and (b) the graphs had derivatives for all values of x. Two of the questions (question 15 & 16) asked about the existence and/or values of limits for the absolute value function and the function 
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(Table 3). For the last four questions (13 to 16), they were also asked to explain their reasoning although this may not be clear from Tables 2 and 3.
Table 2. Questions requiring an explanation (see Figure 1).

	
	Question

	13
	Which of these has limits for all values of x?

	14
	Which of the following can be differentiated for all values of x? 


[image: image21.jpg]



Figure 1.
Graphs for Survey Questions 13 and 14 about limits and differentiability.


(Note that the graph in (e) has a discontinuity that is not clear in the reproduction here).
Table 3. Final two survey questions requiring an explanation about the functions 
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	Question

	15
	Consider the graph of the function shown here (y = |x|, See Figure 2). Does the function have a limit when x=0?

	16
	Do you think it is possible to find the limit of the function [image: image25.png]sin(x)



 as 

 i.e. [image: image29.png]sin(x)




 ?

Explain your thinking, and if you think it is possible, give a value for the limit if you can find it. 
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Figure 2. Graph of 
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 for Question 15.
3. Findings
We received 14 completed responses to the survey, seven males and seven females. For three of these students the previous course they had studied in secondary school was Mathematics Methods
, for eight students their previous course was Mathematics Specialised (note students who undertake Mathematics Specialised have all previously completed Mathematics Methods). Three of the participants had completed other courses to be eligible for enrolment in this undergraduate course. We do not have space to consider in-depth responses to all the questions here, so have selected some examples which we found most interesting, and most supportive of the troublesome nature of the questions that may suggest their identification of threshold concepts. In the following tables (4-13), the correct responses have been bolded where applicable.
Questions about asymptotes (Question 1, Question 2 and Question 3)

These questions showed higher levels of uncertainty than most of the other questions. Table 4 shows that four of the students answered "True" to both questions, whereas the statement for Question 1 is false; the graph can cross horizontal asymptotes. Four students said that they had not seen this before to both questions, and four said that they had forgotten how to do this for both questions. In Question 3, six of the students correctly agreed with the given definition of a horizontal asymptote, while five stated that they had forgotten how this was done (Table 5). We would expect students in all courses (Methods & Specialised) to have met the concept of an asymptote, but less likely the notion of the limit as in Question 3, so these results demonstrate to us some unexpected confusion. Especially interesting is that fewer students said they had not met the conceptualisation of an asymptote as a limit before, but believed they had not met the idea of the nature of an asymptote itself. The result that four students believe the graph of a function can never cross an asymptote, either horizontally or vertically, while less surprising based on our experiences, is nevertheless worrying.
Table 4. Comparison of responses from questions one and two in the survey.

	
	Question 2
	

	Question 1
	True
	False
	I have not seen this before
	I have forgotten how to do this
	Total

	True
	4
	1
	
	
	5

	False
	
	1
	
	
	1

	I have not seen this before
	
	
	4
	
	4

	I have forgotten how to do this
	
	
	
	4
	4

	Total 
	4
	2
	4
	4
	14


Table 5. Summary of Question 3 survey responses.

	Question 3
	True
	False
	I have not seen this before
	I have forgotten how to do this
	Total 

	The horizontal asymptote of a rational function, [image: image33.png]h(x) = L2



  is given by the limit h(x) as  [image: image35.png]X — 00



 ; i.e. [image: image37.png]lim, .. h(x)



 if the limit is finite.
	6
	2
	1
	5
	14


Questions about the definition of a derivative (Questions 9 and 10)

Here eight students correctly agreed that the formal definition of a derivative as given in Table 1 (Q9) refers to the slope of the graph at a point x, and 12 incorrectly agreed that the derivative is the tangent line at a point (Q10). While it is possible the wording of Question 10 may have ‘led’ them to this response, it still indicates some confusion of their understanding of a derivative compared to the means we use to calculate or find it, or the difference between procedures and the concepts themselves. The figures in Table 6 provide a further pointer to the troublesome nature of these concepts, with only one student selecting the correct combination for both questions.
Table 6. Summary of responses to questions about the definition of derivative.
	
	Question 10

	Question 9
	True
	False
	Total

	True
	7
	1
	8

	False
	2
	1
	3

	I have not seen this before
	1
	
	1

	I have forgotten how to do this
	2
	
	2

	Total 
	12
	2
	14


Questions referring to whether limits can be "reached" or "exceeded" (Questions 4, 7, and 8)

Six students agreed that the limits cannot be reached or exceeded. Nine students agreed to the statement that the limit of a series is a value that is never reached; no student correctly answered false.  In contrast, 10 students correctly stated false to the proposition that the limit of a function cannot be exceeded. These results are perhaps not surprising, given that the questions themselves were based around the categories of confusion identified in the literature [9, 15]. However, the inconsistencies in their thinking shown in the comparison of responses to different questions in Tables 7 to 9 add weight to the troublesome nature of limits and their consideration as a threshold concept.
Table 7. Comparison of responses from questions four and seven in the survey.
	
	Question 7
	

	Question 4
	True
	False
	I have not seen this before
	I have forgotten how to do this
	Total

	True
	6
	3
	
	
	9

	False
	
	
	
	
	

	I have not seen this before
	1
	
	
	2
	3

	I have forgotten how to do this
	2
	2
	
	
	2

	Total 
	7
	5
	
	2
	14


Table 8. Comparison of responses from questions four and eight in the survey.
	
	Question 8

	Question 4
	True
	False
	Total

	True
	1
	8
	9

	False
	
	
	

	I have not seen this before
	2
	1
	3

	I have forgotten how to do this
	1
	1
	2

	Total 
	4
	10
	14


Table 9. Comparison of responses from questions seven and eight in the survey.

	
	Question 8

	Question 7
	True
	False
	Total

	True
	
	7
	7

	False
	2
	3
	5

	I have forgotten how to do this
	2
	
	2

	Total 
	4
	10
	14


Questions referring to existence of limits (Questions 5 and 6)

As shown in Table 10, five students incorrectly agreed that the function must be defined at a limit (True for Q5). In contrast, nine students correctly believed that a limit may exist at a point where a function does not have a value (False for Q6). The five students who answered correctly to both statements showed consistency in their responses, we postulate that perhaps this is an indication they have ‘crossed the threshold’ in their thinking about the existence of limits, although the evidence here is insufficient to conclude this here.
Table 10. Comparison of responses from questions five and six in the survey.
	
	Question 6

	Question 5
	True
	False
	I have not seen this before
	Total

	True
	3
	2
	
	5

	False
	1
	5
	1
	7

	I have not seen this before
	
	1
	
	1

	I have forgotten how to do this
	
	1
	
	1

	Total 
	4
	9
	1
	14


Questions referring to the function 
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Table 11. Comparison of responses from questions 11 and 12 in the survey.
	
	Question 12
	

	Question 11
	True
	False
	I have not seen this before
	I have forgotten how to do this
	Total

	True
	1
	7
	1
	2
	11

	False
	1
	2
	
	
	3

	Total 
	2
	9
	1
	2
	14


Table 11 shows that eleven students correctly identified that this function has a limit at  x = 4, and 9 correctly stated that there is not a derivative at this point. Seven answered both questions correctly. It seems possible that the numerical nature of these questions (compared to previously more abstract questions) helped students’ thinking here, but nevertheless the responses here ( in Table 11) suggest better understanding than for asymptotes and the nature of limits themselves.

Questions referring to the graphs in Figure 2 (Questions 13 and 14)

The correct answers to Question 13 as shown in bold in Table 12 are a, c and e, and the correct answer for Question 14 is a (see Table 2 and Figure 1 for the questions and response choices).
Table 12. Graphical responses for questions 13 and 14 in the survey.
	Graph
	a
	b
	c
	d
	e
	none

	Limits at all values of x (Q13)
	10
	6
	9
	8
	10
	1

	Differentiable at all values of x (Q14)
	14
	2
	5
	3
	6
	0


Reasoning for Question 13:

Two students picked the correct answers, (a), (c), and (e) without choosing any other options. Four students used reasoning that suggested that for a limit to exist in a function at a point x, the value of the limit as we approach this point from the negative side should equal that as we approach the same point from the right hand side. However only one of these four students picked solely the three correct answers. For example, while one student correctly stated:

Limits lead to the same point, so not (d),
They did not manage to select all of (a), (c) and (e) as the correct responses. The one student who picked all the correct answers (and no others) put the idea more formally:

These graphs have both and left right limits for all values of x that agree, therefore the limit exists.
Another participant used very similar wording, but chose all the graphs, thus demonstrating that while they perhaps knew the definition, they did not fully understand the concept.
Five of the other students used arguments that involved whether or not a function was defined at all points. This example is from a participant who chose all the options:

The limit can exist at all points just that functions may not exist at a limit.
The next two participants showed confusion about undefined points, and/or their understanding of discontinuity. The first chose (a) only:
All others have undefined points: b, x=0; c, x=approx. 2; d, x = 0; e, x = approx. 2.
The second stated:

b, c, d, and e are all discontinuous, which means they have a limit.
Reasoning Question 14:

Five students gave the correct answer of graph (a) only. When asked for their reasoning, one student stated they had "forgotten", one answer could not be understood and the others argued on the grounds of continuity. All of the students included (a) in their answers, but included other graphs as well in their list of differentiable functions, using arguments that relate to continuity or the existence of values of x where the function is undefined. For example, one student who chose (a), (c), and (d) stated:

Can't differentiate a function where it is undefined.
Another student who chose the same options stated:

There are values for all the reals for these graphs.
These students seem to be confusing their understanding of limits with that of differentiability. This is consistent with the literature [9, 15], and seems to reinforce the possibility of limits being a necessary threshold concept in order to fully understand differentiation.
Questions referring to the existence of limits for some difficult functions (Questions 15 and 16)

There was a high level of uncertainty regarding the existence of a limit at x = 0 for the absolute value function. There was much more certainty about the [image: image41.png]sin(x)




.
Table 13.
Summary of responses for questions 15 and 16 in the survey (see Table 3 and Figure 2).
	
	Yes, the limit exists
	No, there is not limit as x approaches 0
	It depends
	I'm not sure

	Limit of y=|x| when x = 0   (Q15)
	5
	0
	1
	8

	[image: image43.png]sin(x)




 when x = 0   (Q16)
	9
	3
	0
	2


Reasoning Question 15

This question demonstrated the highest level of uncertainty in the students, eight of whom stated that they were uncertain of the answer. Of those who stated that the limit exists, three stated that the limits approaching from both sides of x=0 had the same value, zero. Most of the participants who were unsure did not give an answer. Two students who were unsure gave their reasons as follows:

Can't go lower but I'm not sure if that counts as a limit.

I'm not sure, I would have said "yes, the limit exists" if I was to pick another option, because the function has real x values all along the function, except for at 0, and I think that might be what a limit is.

Reasoning Question 16

It was unlikely students would have met this example in their previous courses, but it is part of their first-year unit content. We asked this question to see if might detect any indication of ‘threshold thinking’ that enables students to correctly argue this question through. Three students stated that the limit was one. One stated that the "expression can be rewritten so that it is not dividing by zero, limit is equal to 1" without giving further explanation. One student stated "The answer is 1 but I don't remember how to work it out". The other student gave a description of L'Hopital's rule without calling it as such, and then correctly gave the answer as one. One student gave the limit as zero. Another participant stated that the limit did not exist because we "can't divide by zero" while another stated that "I believe that the answer is +(ve) infinity, because as the x values get smaller and smaller, sin(x) will approach 0, but as we are dividing by x that is getting smaller and smaller, the answer will approach infinity". There was no indication from any respondents that they understood limits sufficiently to distinguish the process of finding a limit from the concept of existence of the limit, or a link to other limits they may have found which involved dividing by zero, for example the formal definition of a derivative?
Discussion and Implications
The number of participants in this study is too small to clearly establish limits and differentiability as threshold concepts. However, the results of this study agree with the misconceptions and confused understanding shown in the literature [e.g. 4, 5; 11 15], and in the questions where students provided explanations, consistent with the findings and metaphors as described in [10] and [17]. The findings here clearly confirm the troublesome nature of these concepts as one of the primary indicators of a threshold concept. There is considerable confusion between the two concepts, and even though we found indications that some students may have crossed the ‘threshold” in their thinking about the existence of limits for earlier questions (Q5, Q6, Q11, Q12), we did not see evidence of this in later questions. Examples from the yet to be completed analysis of the post-survey interviews may shed further light on this. Their thinking about the existence of limits for the graphical examples in Question 13 was clearly confused, and in some cases mixed up with their understanding of the derivative. No students seemed able to extend their correct thinking from earlier questions in their approach to Question 16, albeit that this question would be new for most of them and is arguably one of the trickier examples students will meet. Nonetheless we might expect a student who had “crossed the threshold” to at least be able to approach this question with an open mind as to the possibility of a limit existing. If these concepts are indeed threshold ones, then clearly these students have not yet crossed it. However, our findings to date support other studies that have investigated threshold concepts in Calculus [13, 18] and Meyer and Land’s [9] original proposal for limits as a threshold concept based on Tall’s work [15]. Further investigation is needed, linking students’ correct thinking (over the threshold?) to more complex examples such as that in Question 16.

Notwithstanding that we have yet to show conclusive support for limits and differentiation as threshold concepts, this study still provides interesting insights into student thinking and misconceptions, with implications for the teaching of these concepts. Firstly the results illustrate the importance of educators needing to not make assumptions about students' prior knowledge. It is clear that students can work with derivatives, even beyond the mere procedural level, yet not understand limits fully. There is limited reference to limits with respect to differentiation in the Australian Mathematics Methods Syllabus papers, where the only mention is: "Limit theorems made plausible". [16, p. 6]. The results of this study suggest that whilst students appear to be working competently on differentiation and integration problems, they might not understand the concept that makes this work possible. In addition to the examples of student responses already cited in support of the data presented in the tables, we found many other interesting comments by students that illustrate the confusion inherent in their thinking, such as the following beliefs:
· Flat lines differentiate to zero, therefore no derivative for (c), (d) in Question 14;

· Can differentiate where there are no vertical asymptotes, so (c), (d) are possible;

· Dividing by zero gives infinity as the answer (Q16);

· The derivative IS the tangent line.
These and the findings presented in the tables lead us to make the following observations and recommendations which we present as implications from this study.

Teaching implications:

· Notwithstanding changing practice based on many years of research, and support offered with technological advances, teachers must recognise that the concepts of limits and differentiation remain difficult for students (sic troublesome);

· Students need to see examples where a graph can cross a horizontal asymptote, and examples where sequences reach their limits;
· We must ask students questions that reveal their reasoning; otherwise we can assume they are correct without realising that they still may have misconceptions. For example, the students who correctly gave the limit as “1” in Question 16, but could not correctly explain their reasoning;

· Students can hold conflicting views. For example, they say that one function has a discontinuity so isn't differentiable but then say another function with a discontinuity is differentiable because the nature of the discontinuity differs ((b), (c), (d) & (e)), or realise that a discontinuity means one function does not have a limit, but believe it is differentiable, (d), everywhere flat so derivative is zero;

· Students can absorb ideas such as that left hand and right hand limits agree, and notions of continuity, but may not grasp the implications fully yet. The responses here were the closest we came to confirming limits as a threshold concept.
Final Comments
The findings of this study have given support for the conceptualisation of limits and differentiation as threshold concepts, and suggested some important implications for supporting and scaffolding student understanding in the teaching of these concepts. We anticipate that the post-survey interviews may provide further examples of students’ thinking with respect to these concepts, and we hope to identify examples from these which provide evidence of students; ‘crossing the threshold’. Results from these interviews have yet to be transcribed or analysed. Further investigation with a larger sample may also identify examples where students’ thinking has clearly “crossed a threshold”, allowing them to argue coherently about these concepts in unfamiliar contexts and using more complex examples.
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