Southern Ocean CO2 sink: The contribution of the sea ice

Bruno Delille1, Martin Vancoppenolle2, Nicolas-Xavier Geilfus3, Bronte Tilbrook4, Delphine Lannuzel5,6, Veronique Schoemann7, Sylvie Becquevort8, Gauthier Carnat7, Daniel Delille9, Christiane Lancelot1, Lei Chou10, Gerhard S. Dieckmann11, and Jean-Louis Tison7

1Unité d’Océanographie Chimique, MARE, Université de Liège, Liège, Belgium, 2Laboratorio d’Oceanografia e del Climat/Institut Pierre-Simon Laplace, CNRS/IRD/UPMC/MNHN, Paris, France, 3Arctic Research Centre, Aarhus University, Aarhus, Denmark, 4CSIRO Wealth from Oceans National Research Flagship and Antarctic Climate and Ecosystem Cooperative Research Centre, Hobart, Tasmania, Australia, 5Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia, 6Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia, 7Glaciology Unit, Department of Earth and Environmental Science, Université Libre de Bruxelles, Brussels, Belgium, 8Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Bruxelles, Belgium, 9Observatoire Océanologique de Banyuls, Université P. et M. Curie, Banyuls sur mer, France, 10Laboratoire d’Océanographie Chimique et Géochimie des eaux, Université Libre de Bruxelles, Bruxelles, Belgium, 11Alfred-Wegener-Institut fuer Polar- und Meeresforschung, Bremerhaven, Germany

Abstract We report first direct measurements of the partial pressure of CO2 (pCO2) within Antarctic pack sea ice brines and related CO2 fluxes across the air-ice interface. From late winter to summer, brines encased in the ice change from a CO2 large oversaturation, relative to the atmosphere, to a marked undersaturation while the underlying oceanic waters remains slightly oversaturated. The decrease from winter to summer of pCO2 in the brines is driven by dilution with melting ice, dissolution of carbonate crystals, and net primary production. As the ice warms, its permeability increases, allowing CO2 transfer at the air-sea ice interface. The sea ice changes from a transient source to a sink for atmospheric CO2. We upscale these observations to the whole Antarctic sea ice cover using the NEMO-LIM3 large-scale sea ice-ocean and provide first estimates of spring and summer CO2 uptake from the atmosphere by Antarctic sea ice. Over the spring-summer period, the Antarctic sea ice cover is a net sink of atmospheric CO2 of 0.029 Pg C, about 58% of the estimated annual uptake from the Southern Ocean. Sea ice then contributes significantly to the sink of CO2 of the Southern Ocean.

1. Introduction

Climate models often consider sea ice as an inert barrier preventing air-sea exchange of gases, a concept which is presently challenged by observation and theoretical considerations. For decades, sea ice has been assumed to be an impermeable and inert barrier to air-sea exchange of CO2 so that current assessment of global air-sea CO2 fluxes or climate models does not include CO2 exchanges over ice covered waters [Takahashi et al., 2009; Tison et al., 2002].

This paradigm relies on the CO2 budgets of the water masses of the Weddell Sea. They suggest limited air-sea exchange of CO2 in the Winter Surface Water when it is subducted and mixed with other water masses to form Weddell Bottom Water [Poison and Chen, 1987; Weiss, 1987], a major contributor of Antarctic Bottom Water. However, Gosink et al. [1976] showed that sea ice is a highly permeable medium for gases based on work to estimate permeation constants of SF6 and CO2 within sea ice. These authors suggested that gas migration through sea ice could be an important factor in winter ocean-atmosphere exchange when the snow-ice interface temperature is above ~10°C. Fluxes of CO2 over sea ice have been reported in the Arctic Ocean [Geilfus et al., 2012, 2013; Miller et al., 2011; Nomura et al., 2010, 2013; Papakyriakou and Miller, 2011; Semiletov et al., 2004, 2007] and in the Southern Ocean [Zemmelink et al., 2006].

During sea ice growth, most of the impurities (gases, dissolved and particulate matter) are expelled from the pure ice crystals at the ice-water interface (skeletal layer). However, a small fraction of impurities (~10%) remains trapped in gaseous and liquid brine inclusions. These contribute to the overall sea ice porosity and host active auto and heterotrophic microbial communities [Arrigo, 2003; Arrigo et al., 1997; Lizotte, 2001;...
Thomas and Dieckmann, 2002). Further removal of impurities occurs via brine drainage processes (gravity drainage and flushing) and convection that are mainly controlled by the history of the thermal regime of the ice [Eicken, 2003; Notz and Worster, 2009; Weeks and Ackley, 1986; Wettlaufer et al, 1997].

Brine volume and salinity adjust to temperature changes in order to maintain thermal equilibrium within the ice [Cox and Weeks, 1983]. A 5% relative brine volume is a theoretical threshold above which sea ice permeability for liquid increases drastically [Golden et al, 1998]. It is also likely to represent a threshold above which air-ice gas exchange increases [Buckley and Trodahl, 1987], although Zhou et al. [2013] suggest higher threshold (between 7.5 and 10%). This permeability threshold would occur at a temperature of −10°C for a bulk ice salinity of 10, corroborating the observation that sea ice is a highly permeable medium for gases [Gosink et al, 1976] allowing air-ice gas exchanges.

The aim of this study is to describe observed pCO2 and CO2 fluxes relationships to sea ice temperature from various locations around Antarctica. We assess and compare the relative contribution of biotic and abiotic processes to the observed changes of pCO2 and estimated related uptake of atmospheric CO2. Finally, we provide a first estimate of Antarctic sea ice contribution to CO2 exchanges with the atmosphere using two independent methods: (a) a global estimate derived from the relative importance of each process controlling the sea ice brine pCO2 and (b) integrating the observed sea ice temperature versus CO2 fluxes relationship into a sea ice 3-D-model.

2. Material and Methods

2.1. Sampling Strategy

Measurements were carried out during the 2003/V1 cruise on the R.V. Aurora Australis from 27 September 2003 to 20 October 2003 in the Indian sector of the Southern Ocean (63.9–65.3°S, 109.4–117.7°E), the ISPOL (Ice Station Polarstern) drift station experiment onboard the R.V. Polarstern from 29 November 2004 to 31 December 2005 in the Weddell Sea (67.35–68.43°S, 55.40–54.57°W), and the SIMBA (Sea Ice Mass Balance in the Antarctica) drift station experiment onboard the R.V. Nathaniel B. Palmer from 1 October 2007 to 23 October 2007 in the Bellingshausen Sea (69.51–70.45°S, 94.59–92.30°W). A complete description of these different working stations could be found in Massom et al [2006] for V1, in Tison et al [2008] for ISPOL, and in Lewis et al [2011] for SIMBA. Only first year pack ice was investigated during 2003/V1 and SIMBA cruises, while both first year and multiyear pack ice were sampled during ISPOL experiment. Sampling was only carried out in floes without melt ponds or slush surface layers.

2.2. pCO2 of Brines

Sampling of ice brine was conducted by drilling shallow sackholes (ranging from 15 cm down to almost full ice thickness) through the surface of the ice sheet. The brine from adjacent brine channels and pockets was allowed to seep into the sackhole for 30–60 min, with the hole covered with a plastic lid [Gleitz et al, 1995], reportedly the best current method to sample brines for chemical studies [Papadimitriou et al, 2004]. Brines was pumped from the hole using a peristaltic pump (Masterflex® - Environmental Sampler), supplied to the device for measurements of partial pressure of CO2 (pCO2), and recycled back at the bottom of the sackhole. The latter were carried out using a membrane contractor equilibrator (Membrana®-Liqui-cell) coupled to an infrared gas analyzer (IRGA, Li-Cor® 6262). Seawater or brines flowed into the equilibrator at a maximum rate of 1 L min⁻¹ and a closed air loop ensured circulation through the equilibrator and the IRGA at a rate of 3 L min⁻¹. Temperature was measured simultaneously in situ and at the outlet of the equilibrator using Li-Cor® sensors. Temperature correction of pCO2 was applied assuming that the relation from Copin-Montégut [1988] is valid at low temperature and high salinity. The IRGA was calibrated soon after returning to the ship while the analyzer was still cold. For V3/2001, CO2-in-air standards calibrated on the World Meteorological Organisation X-85 molar scale (mixing ratios of 304.60, 324.65, and 380.03 ppm) were supplied by Commonwealth Scientific and Industrial Research Organisation (CSIRO) Atmospheric Research, Australia. CO2-in-air standards with mixing ratios of 0 ppm and 350 ppm of CO2 were supplied by Air Liquide Belgium® for the ISPOL and SIMBA cruise. Stable field pCO2 readings usually occurred within 3 min of flowing gas into the IRGA. The equilibration system ran 6 min before averaging the values given by the IRGA and temperature sensors over 30 s and recording the averaged values with a data logger (Li-Cor® Li-1400). All the devices (except the peristaltic pump) were enclosed in an insulated box containing a 12 V power source and was warmed to keep the inside temperature just above 0°C.
2.3. Dissolved Inorganic Carbon and Total Alkalinity

A peristaltic pump (Masterflex® - Environmental Sampler) was used to collect brines from sackholes but also underlying water at the ice-water interface, 30 m deep and at an intermediate depth (5 m during 2003/V1 cruise and 1 m during ISPOL cruise) for dissolved inorganic carbon (DIC) and total alkalinity (TA) measurements.

DIC measurements on 2003/V1 were made using a single operator multiparameter metabolic analyzer (SOMMA) and UIC® 5011 coulometer [Johnson et al., 1998]. The system was calibrated by injecting known amounts of pure CO₂ into the system. The number of moles of pure CO₂ injected bracketed the amounts measured in sea ice brines and showed the measurement calibration did not change over the range of concentrations measured. The measurement precision and accuracy was checked during the analyses using certified reference materials provided by Dr. A. Dickson, Scripps Institution of Oceanography. Repeat analyses showed an accuracy and precision for the DIC measurements better than ± 0.1%.

TA was computed from pCO₂ and DIC using the CO₂ dissociation constants of Mehrbach et al. [1973] refitted by Dickson and Millero [1987]. We assumed a conservative behavior of dissociation constants during seawater freezing. During the ISPOL experiment, TA was measured using the classical Gran potentiometric method [Gran, 1952] on 100 mL GF/C filtered samples, with a reproducibility of ± 3 μmol kg⁻¹. DIC was computed from TA and pCO₂ for ISPOL.

2.4. Air-Ice CO₂ Fluxes

A chamber was used to measure air-ice CO₂ fluxes. The accumulation chamber (West system®) is a metal cylinder closed at the top (internal diameter 20 cm; internal height 9.7 cm) with a pressure compensation device. A rubber seal surrounded by a serrated-edge iron ring ensured airtight connection between the base of the chamber and the ice. For measurement over snow, an iron cylinder was mounted at the base of the chamber to enclose snow down to the ice and prevent lateral advection of air through the snow. The chamber was connected in a closed loop between the air pump (3 L min⁻¹) and the IRGA. The measurement of pCO₂ in the chamber was recorded every 30 s for at least 5 min. The flux was computed from the slope of the linear regression of pCO₂ against time (r² ≥ ± 0.99) according to Frankignoulle [1988]. The uncertainty of the flux computation due to the standard error on the regression slope is on average ±3%.

2.5. Air-Ice CO₂ Flux/Ice Temperature Relationship

Using field data, we calculated a relationship between CO₂ fluxes (F_CO₂) over both first year and multiyear ice as a function of sea ice temperature (Tsi) at 5 cm depth (Figure 1a). The regression is composed of two second-order polynomial regressions valid between −9°C and −7°C and between −7°C and 0°C, respectively (Table 1).

2.6. Description of the Sea Ice Model

We used NEMO-LIM3 [Madec, 2008; Vancoppenolle et al., 2008] ocean-sea ice model to scale in situ measurements. NEMO (Nucleus for European Modelling of the Ocean) is a widely used ocean model, while LIM3 (Louvain-la-Neuve Ice Model) is an advanced large-scale sea ice model, carefully validated for both hemispheres. LIM3 is a C-grid dynamic thermodynamic model, including the representation of the subgrid-scale distributions of ice thickness, enthalpy, and salinity as well as snow volume. Ice dynamics are resolved using an elasto-visco-plastic rheology, following concepts of Hunke and Dukowicz [1997]. Snow and sea ice thermodynamics include vertical diffusion of heat with a formulation of brine thermal effect. There is also an explicit formulation of brine entrainment and drainage. Sources and sinks of ice mass include basal growth and melt, surface melt, new ice formation in open water, as well as snow-ice formation. In order to account for subgrid-scale variations in ice thickness, ice volume and area are split into five categories of ice thickness. Thermodynamic (ice growth and melt) as well as dynamical (rafting and ridging) processes control the redistribution of ice state variables within the ice thickness categories. LIM3 is coupled to NEMO, a hydrostatic, primitive equation finite difference ocean model running on a 2° × 2° cos φ grid called ORCA2.

We used the NEMO-LIM3 model output rather than satellite derivations of sea ice temperature as the latter are presently not reliable in all conditions [Lewis, 2010]. In comparison, we have reasonable confidence in the ice thickness, snow depth, and temperature simulated by LIM3, for the two following reasons. First, a series of one-dimensional validations of the thermodynamic component of LIM3 was made over various sites in both hemispheres [Vancoppenolle et al., 2007]. Vertical profiles of temperature, salinity, as well as ice

...
thickness and snow depth were found to be in close agreement with field observations. In particular, the sea ice permeability transitions seem to be quite well captured. Second, an extensive large-scale validation of LIM3, forced by NCEP-NCAR daily reanalyses of meteorological data [Kalnay et al., 1996] was performed.

Figure 1. (a) pCO$_2$ within brines (pCO$_2$ brines) versus sea ice temperature integrated over the depth of sackholes (green: 2003/V1 cruise, orange: ISPOL cruise, and blue: SIMBA cruise). Gray triangles correspond to two stations carried out on a snow-loaded floe which experienced flooding. Horizontal dotted line and solid curve are pCO$_2$ atm and the regressed pCO$_2$ brine, respectively. Fit expression of the regressed pCO$_2$ brine as a function of sea ice temperature (T_{si}) is pCO_2 brine = $101.5 + 12.96 T_{si} + 3.915 T_{si}^2 - 1.360 T_{si}^3$ (number of points analyzed and coefficient of determination are 65 and 0.8625, respectively). Red dashed curve represents the theoretical variation related to both dilution and the thermodynamic effect of temperature increase (see text for details). (b) Net air-sea CO$_2$ fluxes versus snow-ice interface temperature. Solid curve represents the relationship of air-ice CO$_2$ fluxes to snow-ice interface temperature used for reconstructing air-ice CO$_2$ fluxes from the NEMO-LIM3 model. Flux measurements during superimposed ice events (gray diamonds) were excluded from the calculation. Correspondence between season and ice temperature is only indicative and corresponds to the conditions encountered during our surveys.
In the Antarctic, the simulated sea ice concentration, thickness, drift and salinity and snow depth model fields are in reasonable agreement with available observations. Because of errors in the wind forcing, there is a low bias in ice thickness along the east side of the Antarctic Peninsula, but this region is not of particular importance for the present analysis.

2.7. Computation of the Snow-Ice Interface Temperature and Air-Ice CO₂ Flux in the Sea Ice Model

In LIM3 (Figure 2), for each model grid cell, the sea ice thickness categories have a relative coverage \(d'(l = 1, \ldots, 5) \). In each thickness category \(l \), the sea ice is treated as a horizontally uniform column with ice thickness \(h_{li} \) and snow depth \(h_{sl} \). In order to compute the vertical temperature profile, the sea ice in each category is vertically divided into one layer of snow, with a midpoint temperature \(T_s \) and \(N = 5 \) layers of sea ice with midpoint temperatures \(T_{ki} \) (\(k = 1, \ldots, 5 \)).

The snow and sea ice temperatures are computed by the model by solving the heat diffusion equation. For the purpose of the present study, we diagnose the ice-air interfacial temperature by assuming the continuity of the heat conduction flux at the snow-ice interface:

\[
T_{si} = \frac{k_{li} T_{si} h_{si} + k_s T_s h_s}{k_{li} h_{si} + k_s h_s} / N,
\]

where \(k_{li} \) and \(k_s \) are the thermal conductivities of the first sea ice layer and of snow, respectively. The latter is done for each sea ice thickness category, which gives \(T_{si} \) (\(l = 1, \ldots, 5 \)).

Table 1. Fit Expression of the Relationship Between CO₂ Fluxes (\(F_{CO_2} \)) over Both First Year and Multiyear Ice as a Function of Sea Ice Temperature (\(T_{si} \)) at 5 cm Depth Used for Reconstructing Air-Ice CO₂ Fluxes From the NEMO-LIM3 Model as It Appears in Figure 1b (Solid Curve)

<table>
<thead>
<tr>
<th>(T_{si} (\degree C))</th>
<th>(F_{CO_2}) (mmol C m(^{-2}) d(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{si} < -9)</td>
<td>0</td>
</tr>
<tr>
<td>(-9 < T_{si} < -7)</td>
<td>(F_{CO_2} = 27.945 + 6.39 T_{si} + 0.365 T_{si}^2)</td>
</tr>
<tr>
<td>(T_{si} > -7)</td>
<td>(F_{CO_2} = -4.1962 + 0.34286 T_{si} + 0.033 T_{si}^2)</td>
</tr>
</tbody>
</table>

*Number of samples, mean error, standard error, root-mean-square error, and coefficient of determination were 21, \(-0.099\) mmol C m\(^{-2}\) d\(^{-1}\), \(0.995\) mmol C m\(^{-2}\) d\(^{-1}\), 0.953, and 0.728, respectively.

Figure 2. Scheme of the representation of sea ice in the LIM3 model, showing the \(L = 5 \) thickness categories, horizontally uniform with unique ice thickness \(h_{li} \) and snow depth \(h_s \) and characterized by a relative coverage \(d'_i \). In each ice thickness category, the snow-ice column is vertically divided into one layer of snow and \(N = 5 \) layers of sea ice.
The temperature at the snow-ice interface (Figure 1b) is used to compute the air-ice CO$_2$ flux in each sea ice thickness category, using the empirical relationship of Figure 1b:

$$F_{\text{CO}_2}^{\text{air-ice}} = F_{\text{CO}_2}(T_{\text{si}}).$$

(2)

Finally, the net, air-ice CO$_2$ flux over all ice categories in the model grid cell is given by

$$F_{\text{CO}_2}^{\text{net}} = \sum_{i=1}^{5} F_{\text{CO}_2}^{i}.$$

(3)

Note that, as flooding affects the CO$_2$ dynamics, points with surface flooding were excluded in the present analysis. Snow-ice formation occurs in the model if the snow load is large enough to depress the snow-ice interface under the sea level. The flooded snow is transformed into ice by applying heat and mass conservation.

Following the setup detailed in Vancoppenolle et al. [2008], we conducted a hindcast simulation of the Antarctic sea ice pack over 1976–2007, using a combination of daily NCEP reanalyses of air temperature and winds [Kalnay et al., 1996] and of various climatologies to compute the thermodynamic and dynamic forcings of the model. In addition, the simulation includes the diagnostic air-ice CO$_2$ flux. The time step is 1.6 h for the ocean and 8 h for the sea ice.

3. Results and Discussion

3.1. Changes in pCO$_2$ of Brines and Air-Ice CO$_2$ Fluxes During Sea Ice Warming

3.1.1. pCO$_2$ of Brines

Sea ice-brine pCO$_2$ decreased dramatically as sea ice warmed (Figure 1a) and the brines shifted from a large CO$_2$ oversaturation ($\Delta pCO_2 = pCO_2(\text{brines}) - pCO_2(\text{air}) = 525$ ppm) during early spring (October) to a marked undersaturation ($\Delta pCO_2 = -335$ ppm) during summer (December). The sea ice brine pCO$_2$ appears to be tightly related to sea ice temperature.

As the ice temperature increases, ice crystals melt and salinity decreases accordingly. We explored the relationships among brine pCO$_2$, temperature, and salinity by carrying out a stepwise simulation of conservative dilution of early spring-time brine collected during 2003/V1 cruise during warming at thermal brine-ice equilibrium. In details, (i) we calculated brine salinity at a given temperature according to the relationship of Cox and Weeks [1983]; (ii) we normalized mean TA and DIC to a salinity of 35 (TA$_{35}$ and DIC$_{35}$, respectively) for the two coldest brines collected during 2003/V1 cruise; (iii) we computed TA$_t$ and DIC$_t$ at a given temperature, t (and related salinity) assuming a conservative behavior of TA and DIC; and (iv) computed the brine pCO$_2$ for each temperature from TA$_t$ and DIC$_t$, using CO$_2$ acidity constants of Dickson and Millero [1987]. Here we assume that these constants are valid for the range of temperatures and salinities encountered within the sea ice [Delille et al., 2007; Papadimitriou et al., 2004]. The resulting pCO$_2$-temperature relationship is shown in Figure 1a (red dashed curve). The dilution effect largely encompasses the thermodynamic effect of temperature increase on pCO$_2$ and the pattern of observed pCO$_2$ matches the theoretical variation related to both processes. This suggests that a large part of the spring pCO$_2$ drawdown is driven by the dilution of brines associated with the melting of ice crystals as temperature increases. Conversely, the oversaturation observed at the end of winter can result from brine concentration during sea ice growth and cooling.

3.1.2. CO$_2$ Fluxes

While air-ice CO$_2$ fluxes were not detectable below -8°C (Figure 1b), we observed positive fluxes up to $+1.9$ mmol m$^{-2}$ d$^{-1}$ between -8 and -6°C (where a positive flux corresponds to a release of CO$_2$ from the ice to the atmosphere). Above -6°C, air-ice CO$_2$ fluxes decrease down to -5.2 mmol m$^{-2}$ d$^{-1}$ in parallel with the increase of temperature. These fluxes are of the same order of magnitude as the fluxes reported by Nomura et al. [2013] over land fast ice. Higher sinks (negative fluxes: -6.6 to -18.2 mmol m$^{-2}$ d$^{-1}$) have been reported in Antarctica [Zemmelink et al., 2006]. These were carried out using eddy covariance over a slush ice—a mixture of melting snow, ice, and flooding seawater covering the sea ice. Note, however, that computations of Zemmelink et al. [2006] should be considered with caution, since they did not take into account at the time proper corrections required for open-path CO$_2$ analyzer in cold temperature [Burba et al., 2008].
3.2. Assessment of Atmospheric CO2 Uptake by Antarctic Sea Ice From the Relative Contribution of Processes Controlling Sea Ice pCO2

Impurities expulsion (that might be enhanced for CO2 compared to salt [Loose et al., 2009]) changes in brines concentration, precipitation, or dissolution of carbonate [Anderson and Jones, 1985; Delille et al., 2007; Papadimitriou et al., 2004, 2007; Rysgaard et al., 2007], abiotic release or uptake of gaseous CO2, primary production, and respiration all contribute to CO2 dynamics [Delille et al., 2007; Sægård et al., 2013] in sea ice. In this section, we will describe those processes and provide an estimate of their relative contribution to spring and summer pCO2 changes in sea ice. We estimated the potential maximal individual impact of thermodynamic, chemical and biological processes (temperature increase and related dilution, carbonate dissolution and primary production) to the spring-summer decrease of pCO2 (Table 2). The variations are computed from the conditions of temperature, bulk ice salinity, TA35, and pCO2 (27.2°C, 5.4, 791 ppm, respectively) corresponding to the average of the two coldest conditions encountered during the 2003/V1 (coldest end term of the solid curve in Figure 1a) and ISPOL cruises. Related changes during the spring to summer transition are discussed in the sections below.

Table 2. Estimates of Potential pCO2 Changes Related to Spring and Summer Physical and Biogeochemical Processes Observed During the 2003/V1 and ISPOL Cruises

<table>
<thead>
<tr>
<th>Related Changes</th>
<th>Temperature increase and related dilution</th>
<th>Primary production</th>
<th>CaCO3 dissolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>5.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salinity (of Brines)</td>
<td>−94</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TA (µmol kg⁻¹ of Bulk Ice)</td>
<td>0</td>
<td>4.1</td>
<td>157.2</td>
</tr>
<tr>
<td>DIC (µmol kg⁻¹ of Bulk Ice)</td>
<td>0</td>
<td>−25.8</td>
<td>76.8</td>
</tr>
<tr>
<td>TA (µmol kg⁻¹ of Brines)</td>
<td>0</td>
<td>107</td>
<td>407.5</td>
</tr>
<tr>
<td>DIC (µmol kg⁻¹ of Brines)</td>
<td>0</td>
<td>−669</td>
<td>2038</td>
</tr>
<tr>
<td>pCO2 (ppm in Brines)</td>
<td>−2125</td>
<td>−1813</td>
<td>−684</td>
</tr>
<tr>
<td>pCO2 (ppm in Brines)</td>
<td>−1813</td>
<td>−669</td>
<td>−639</td>
</tr>
</tbody>
</table>

3.3. Changes in Brines Concentration

In autumn and winter, decrease of temperature leads to the concentration of solutes in brines inclusions which induce high pCO2 within sea ice brines as observed in Figure 1a. In spring and summer, as the temperature increases, the melt of ice crystals and the subsequent dilution of the brines promote a decrease of the sea ice brine pCO2. For all our cruises, temperature increased from −7.2°C to −1.3°C (corresponding to an increase of 5.9°C in Table 2) with a decrease of the brine salinity from 117.1 to 23.5 (corresponding to a salinity change of −94 in Table 2) according to relationships of Cox and Weeks [1983].

The decrease in salinity, related to the rise of temperature, leads to the dilution of DIC and TA. This induces a computed pCO2 drop of 684 ppm (Table 2), using the CO2 dissociation constants of Mehrbach et al. [1973] refitted by Dickson and Millero [1987]. Brine dilution by internal melting appears to account for a significant part of the observed pCO2 spring drawdown.

3.4. Primary Production

While sympagic algae are still active in autumn and winter, their photosynthetic rate should be limited by light availability, low temperatures, high salinity, and restricted space for growth [Arrigo et al., 1997; Mock, 2002], and this contribution to the DIC normalized to a constant salinity of 35 (DIC35) winter removal observed in Figure 3 is therefore likely small.

Estimating primary production in sea ice—and the related impact on pCO2—is challenging. We assumed the overall sea ice primary production prior to and during the ISPOL cruise corresponded to the autotrophic organic carbon (OCautotroph) standing stock in the ice at the end of the ISPOL cruise. This autotrophic organic carbon was estimated from Chl a measurements (at 6 depths) presented in Lannuzel et al. [2013] and a C:Chl a ratio of 83. This ratio was determined by comparing Chl a concentration and OCautotroph content derived from abundance and biovolume of autotrophic organisms measured from inverted and epifluorescence microscopy observations, and carbon:volume conversion factors [Hillebrand et al., 1999; Menden-Deuer and Lessard, 2000].

The autotrophic organic carbon amount could be underestimated because it does not take into account losses of autotrophic organic carbon (i.e., mortality, exchange with the underlying seawater). On the other
hand, we neglected the part of autotrophic community originating from organisms trapped during sea ice growth and autumnal primary production. At the end of the ISPOL cruise, the mean Chl \(a \) concentration was 3.7 \(\mu g \) kg\(^{-1} \) of bulk ice, which corresponds to an \(OC_{\text{autotroph}} \) standing stock of 309 \(\mu g \) C kg\(^{-1} \) of bulk ice. The buildup of the \(OC_{\text{autotroph}} \) standing stock would correspond to an uptake of DIC of 25.8 \(\mu mol \) kg\(^{-1} \) in bulk ice and an increase of TA of 4.1 \(\mu mol \) kg\(^{-1} \) of bulk ice, according to the Redfield-Ketchum-Richards stoichiometry of biosynthesis [Redfield et al., 1963; Richards, 1965]. With the volume of brines derived from the equations of Cox and Weeks [1975], revisited by Eicken [2003], this leads to a DIC decrease of 669 \(\mu mol \) kg\(^{-1} \) of brines and a TA increase of 107 \(\mu mol \) kg\(^{-1} \) of brines (Table 2) and a subsequent decrease of the of brines pCO\(_2\) of 639 ppm (Table 2). The buildup of the \(OC_{\text{autotroph}} \) standing stock would also correspond to a primary production of 0.26 g C m\(^{-2} \) considering an ice thickness of 90 cm (average ice thickness during the ISPOL survey).

3.5. Calcium Carbonate

Figure 3 provides insights on the processes occurring within sea ice prior and during our surveys. We plotted normalized DIC\(_{35} \) versus normalized TA (TA\(_{35} \)) in order to distinguish which processes, other than dilution/concentration and temperature changes, control the carbonate system. Normalization removes the influence of dilution/concentration, while temperature changes do not affect DIC and TA. The biogeochemical processes that can potentially affect DIC\(_{35} \) and TA\(_{35} \) are reported as solid bars. DIC\(_{35} \) and TA\(_{35} \) of brines in spring are significantly lower than in the underlying water. Differences between brines and the underlying water decrease in summer. TA\(_{35} \) and DIC\(_{35} \) in both spring and summer are remarkably well correlated with a slope of 1.2. Carbonate dissolution/precipitation best explain the observed trend, although the theoretical slope should be 2. Such a discrepancy might be due to uptake of gaseous CO\(_2\) (from bubbles or the atmosphere) combined with carbonate dissolution, mixing with underlying water owing to internal convection, or enhanced gas expulsion [Golden et al., 1998; Loose et al., 2009; Weeks and Ackley, 1986]. The low TA\(_{35} \) value observed during 2003/V1 cruise suggests that carbonate precipitation occurred within sea ice prior to the cruise.

Rysgaard et al. [2007] suggested that precipitation of calcium carbonate in sea ice can act as a significant sink for atmospheric CO\(_2\). However, there are still some crucial gaps in the current understanding of carbonate precipitation in sea ice. In particular, available field experiments hardly addressed the timing and conditions of carbonate precipitation in natural sea ice. Knowing these conditions is nevertheless crucial to assess the role played by sea ice carbonate precipitation as a sink or source of CO\(_2\) for the atmosphere. In order to bring some attention on the need to better constrain CaCO\(_3\) precipitation in natural sea ice, we consider below different scenarios of CaCO\(_3\) precipitation and explore how air-ice CO\(_2\) fluxes depend on the condition of CaCO\(_3\) precipitation. Furthermore, the fate of carbonate precipitates is a good illustration of how intricate the links between biogeochemical and physical sea ice processes are (Figure 4). Based on field studies, “excess” TA in the water column during sea ice melting was attributed to the dissolution of calcium carbonate precipitated in brines and released into the underlying water [Jones et al., 1983; Rysgaard et al., 2007]. Precipitation of calcium carbonate as ikaite (CaCO\(_3\).6H\(_2\)O) crystals has been observed both in the

Figure 3. Normalized DIC to a constant salinity of 35 (DIC\(_{35} \)) against normalized TA (TA\(_{35} \)). Open squares and open circles denote spring (2003/V1 cruise) and summer (ISPOL cruise) samples, respectively. The slope of the corresponding regression line is reported as “a.” Solid square and circle report the average of all under-ice measurements carried during 2003/V1 and ISPOL cruise, respectively (the corresponding average pCO\(_2\) are 417 and 390 ppm, respectively). Arrows represent the theoretical variation of DIC\(_{35} \) and TA\(_{35} \) due to biogeochemical processes (i.e., photosynthesis/respiration, calcium carbonate dissolution/precipitation, mixing with underlying water, uptake/release of CO\(_2\) with the atmosphere or bubbles trapped within the ice). The theoretical slopes of the relative variation of TA\(_{35} \) and DIC\(_{35} \) of each biogeochemical process are given (number between parentheses).

Arctic and the Antarctic sea ice [Dieckmann et al., 2008, 2010; Geilfus et al., 2013; Rysgaard et al., 2007, 2013; Søgaard et al., 2013].

If carbonate precipitates in high salinity-low temperature conditions, such precipitation would likely take place in late autumn or winter in the upper layers of sea ice while brines channels are closed (Figure 4B). This precipitation produces CO₂. If brines channels are closed, this CO₂ is not transported elsewhere. For instance Killawee et al. [1998] and Tison et al. [2002] already observed CO₂-rich bubbles in artificial sea ice and suggested that they could be issued from carbonate precipitation. During spring internal melting, dissolution of carbonate solids formed in fall and winter should consumes CO₂ in the same amount as it was produced by precipitation. The net uptake of atmospheric/sea water CO₂ related to the production and dissolution of carbonate in that case would be nil over the period.

In the opposite, the phase diagram of Assur [1958] and the work of Richardson [1976] suggest that ikaite could precipitate at relatively high temperature (−2.2 °C) and low salinity. Under these conditions, carbonate precipitation might potentially take place in the skeletal layer (the lamellar ice-water interface, a relatively open system) during sea ice growth (Figure 4F). At the ice-water interface, the segregation of impurities enhances CO₂ concentration at the ice-water interface during ice growth [Killawee et al., 1998] and acts as a source of CO₂ for the underlying layer. CO₂ produced by the precipitation can either be expelled to the underlying water layer (Figure 4C) or released to the atmosphere, especially in young thin permeable sea ice [Geilfus et al., 2013]. A crucial issue is the fate of carbonate solids formed in the skeletal layer. They can either (a) sink (Figure 4F) in the underlying layer faster than the CO₂ rich brines (Figure 4D). In that case, carbonate precipitation acts as a net source of CO₂ for the atmosphere, especially if some CO₂-rich brines trapped within sea ice are connected to the atmosphere in spring and summer (Figure 4E). (b) Carbonate solids may sink at the same rate than the brines that transport produced CO₂ with negligible impact on DIC budget of the water column and the impact for the atmosphere is nil. (c) Carbonate solids remain trapped in the tortuosity of the skeletal layer while CO₂ produced by the precipitation is expelled to the underlying water with the brines (Figure 4C) and entrained toward deep layers due to the high density of brines. The dissolution of trapped carbonate solids in spring and summer triggered by temperature increases and related salinity decreases, would consume CO₂ and drive CO₂ uptake within the ice. In that case, carbonate precipitation acts as a sink for atmospheric CO₂. However, Papadimitriou et al. [2013] showed recently that at −2.2 °C carbonate precipitation can occur only in low pCO₂ conditions that are uncommon below sea ice during sea ice formation.

Taking into account the estimates of the saturation state of ikaite as a function of brine pCO₂ and temperature provided by Papadimitriou et al. [2013] and taking into account the pCO₂ versus temperature

Figure 4. Fate of carbonate solids precipitated within sea ice.
This leads to the segregation between carbonate precipitates, which remain trapped within sea ice while the CO₂ produced is expelled to the underlying water with brines. Such a mechanism could act as an efficient pump of CO₂ from the atmosphere. The expulsion of brines enriched in CO₂ leads to the formation of dense water that sinks rapidly during sea ice growth. The sinking of dense water is the main driver of deepwater formation and is potentially an efficient CO₂ sequestration pathway. Numerous vertical distributions profiles of TA below sea ice have revealed the signature of carbonate precipitation [Weiss et al., 1979]. When sea ice melts during spring and summer, trapped carbonate solids dissolve as the result of the combined increase of temperature and decrease of salinity either within sea ice or in the underlying water. This dissolution of carbonate solids observed by Jones et al. [1983] leads to a decrease of pCO₂ and might act as an efficient and significant sink of CO₂ according to observations and models [Rysgaard et al., 2007, 2011, 2012; Søgaard et al., 2013]. However, as underlined before, part of that process might not be a net annual sink if carbonate precipitate in permeable sea ice, and that the produced CO₂ degasses to the atmosphere.

Table 3. Estimates of Potential Air-Ice CO₂ Fluxes In Order To Restore Equilibrium Following Changes in Brine pCO₂, Associated to Spring and Summer Physical and Biogeochemical Processes Observed During the 2003/V1 and ISPOL Cruises

<table>
<thead>
<tr>
<th>Process</th>
<th>Related CO₂ Transfer From the Atmosphere (mmol m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature increase and related dilution</td>
<td>-60</td>
</tr>
<tr>
<td>CaCO₃ dissolution</td>
<td>-57</td>
</tr>
<tr>
<td>Primary production</td>
<td>-25</td>
</tr>
<tr>
<td>Total</td>
<td>-141</td>
</tr>
</tbody>
</table>

Flux representative of a 4 month period.

3.6. First-Order Assessment of Air-Ice CO₂ Transfers Over Antarctic Sea Ice

The potential air-ice CO₂ transfers related to sea ice physical and biogeochemical processes were assessed by considering a homogeneous 90 cm thick sea ice cover in equilibrium with the atmosphere and isolated from exchange with the underlying water. The sea ice thickness value is the mean observed during the ISPOL experiment and is low compared to the values generally observed in the Weddell Sea and elsewhere [Haas et al., 2003; Timmermann et al., 2002]. Temperature, salinity, and δ¹⁸O data [Tison et al., 2008] suggest that low exchanges occurred between sea ice and the underlying layer during the ISPOL experiment. We assumed that sea ice was initially in equilibrium with the atmosphere (pCO₂ = 370 ppm), and we applied the biogeochemically driven DIC and TA changes of Table 3 (expressed per kilogram of bulk ice), and then computed the air-ice CO₂ transfers required to restore equilibrium. We used the brine volume values computed from the equations of Cox and Weeks [1975] revisited by Eicken [2003] and mean conditions observed in relationship of Figure 1a, it seems reasonable that the threshold of saturation of ikaite for brine corresponds to temperature ranging between −5°C and −6°C. So when the ice cools down, carbonate precipitation can potentially develop below −5°C. If the bulk salinity of ice is above 5, then at −5°C, the brine volume is above 5% [Cox and Weeks, 1983; Eicken, 2003] and ice is permeable [Golden et al., 1998]. In these conditions, fluids still percolate and transport CO₂ while solid particles remain trapped due to the tortuosity of the ice matrix. This corresponds to the previous (c) scenario.
during the two last ISPOL stations (mean sea ice temperature: −1.3 °C, mean brine salinity: 3.8, and mean TA: 1667 μmol kg⁻¹ of brines). For the uptake owing to temperature change and related dilution effect, we considered a temperature increase from −7.2 to −1.3 °C corresponding to the range of observations during the 2003/V1 and ISPOL cruises, salinity decrease from 117 to 24, and decrease of TA from 8135 to 1667 μmol kg⁻¹ of brines so that TA is remains constant.

For an Antarctic first year sea ice surface area of 14 × 10⁶ km² [Comiso, 2003], the corresponding upscaled overall CO₂ uptake due to those cumulated three processes (Table 3) is 0.024 Pg C for spring-summer.

3.7. Comparison of the Significance of the Main Processes on CO₂ Uptake
Tables 2 and 3 provide some insights on the relative contribution of the three main processes (increase of temperature and related dilution, primary production, and dissolution of carbonate solids) to the pCO₂ drawdown and the uptake of atmospheric CO₂. It must keep in mind that the assessment of the contribution of primary production is less robust than the other assessments. As observed by Delille et al. [2007] in Antarctic land fast ice, the impact on pCO₂ of warming and related dilution is similar to that of dissolution of carbonate solids. The contribution of primary production is only slightly lower (Table 2). In terms of CO₂ uptake, the contribution of primary production represents only 45% of the contribution of each other process, but it still significant. In contrast Søgaard et al. [2013] in subarctic land fast suggest that the contribution of primary production to the uptake of atmospheric CO₂ is pretty small compared to the other processes. However, these differences should reflect the differences in primary production between different areas.

3.8. Assessment of Atmospheric CO₂ Uptake by Antarctic Sea Ice From Fluxes: Sea Ice Temperature Relationship in a 3-D Model
We measured CO₂ fluxes over widespread sea ice without biologically active surface communities. Previous eddy correlation CO₂ fluxes measurements were carried out over areas covered by particular surface environments, namely melt ponds and slush [Semiletov et al., 2004; Zemmelink et al., 2006]. Slush is known to hosts a highly productive algae community [Legendre et al., 1992]. Sea ice surface communities benefit from high light levels and from nutrients from seawater flooding as snow loading or sea ice rafting depresses the ice surface below the freeboard. Such surface flooding occurs over 15–30% of the ice pack in Antarctica [Wadhams et al., 1987]. These surface communities exhibit photosynthetic rates comparable to those of open ocean Antarctic phytoplankton [Lizotte and Sullivan, 1992] and might be responsible for the majority of sea surface productivity in Antarctic sea ice [Legendre et al., 1992]. They easily exchange CO₂ with the atmosphere through the porous snow cover and can potentially enhance significantly the estimate for CO₂ uptake by the sea ice cover given below.

In a heterogeneous environment like sea ice, the small spatial resolution of the chamber CO₂ flux measurements allows a consistent comparison with pCO₂ within the ice. The pCO₂ gradient between the atmosphere and the brines in the sea ice top layer is the main driver of CO₂ fluxes. The CO₂ fluxes are consistent with the saturation level of CO₂ in the brines. No CO₂ flux was detected below −10 °C suggesting that sea ice was then virtually impermeable to CO₂ exchange (Figure 1b). At a temperature of −7 °C, the low permeability of the ice results in weak net CO₂ fluxes despite elevated pCO₂. As the temperature increases, pCO₂ of the ice decreases and sea ice shifts from a transient CO₂ source to a sink.

The fluxes are modulated by factors like sea ice temperature and snow and ice structure [Geilfus et al., 2012; Nomura et al., 2010, 2013]. While snow allows exchange of gases with the atmosphere [Albert et al., 2002; Massman et al., 1997; Takagi et al., 2005], very low to nil fluxes were observed after the formation of lenses of superimposed ice above sea ice (diamonds in Figure 1b) that was detected at the sampling site and elsewhere during ISPOL cruise [Nicolaus et al., 2009]. Superimposed ice forms after a strong snow melt event when percolating freshwater refreezes at the contact of proper sea ice [Haas et al., 2001]. As freshwater ice, the superimposed ice is impermeable to gas transport [Albert and Perron, 2000]. The formation of superimposed ice at the top of sea ice observed at certain stations during ISPOL cruise is the best candidate to explain the inhibition of air ice CO₂ fluxes at those stations. During superimposed ice events, ongoing strong dilution of the brine by the melting sea ice was decreasing brine pCO₂. Development of superimposed ice impeded CO₂ transfer from the atmosphere to the sea ice that normally should drive pCO₂ values toward the atmospheric concentration. As a result, drastic decreases of brine pCO₂ down to 30 ppm were observed during superimposed ice events. This highlights the role of CO₂ invasion from the atmosphere.
that balances the summer pCO2 drawdown sustained by dilution and primary production and maintains sea ice pCO2 above 100 ppm.

Despite the effect of snow and ice structure on fluxes, sea ice temperature appears to exert a crucial control on both sea ice pCO2 gradient, gas transfer through permeability, and ultimately on CO2 transfer at the air-ice interface (Figure 1b). We therefore derived an empirical relationship between CO2 flux and sea ice temperature (Figure 1b) allowing the reconstruction of CO2 flux fields (Figure 5) using sea ice temperature, concentration, and coverage from the NEMO-LIM3 large-scale sea ice-ocean model [Madec, 2008; Vancoppenolle et al., 2008]. Spring and summer air-ice CO2 fluxes were estimated from 1997 to 2007 for nonflooded areas with ice concentration above 65% (Figure 6), corresponding to the range of sea ice concentration encountered during sampling. This upscaling suggests that Antarctic sea ice cover pumps 0.029 Pg C of atmospheric CO2 (Table 4) into the ocean during the spring-summer transition.

This assessment corroborates the first-order independent assessment derived from pCO2 dynamics relative to each main process (see previous section). Both CO2 sink estimates most probably underestimate the uptake of CO2 over Antarctic sea ice as they do not account for (1) areas with sea ice concentration < 65%, (2) flooded areas, and (3) surface communities that may significantly enhance CO2 uptake.

4. Conclusion

The elevated sea ice pCO2 in winter results from an intricate superimposition of counteracting processes: those increasing pCO2 such as brine concentration and carbonate precipitation, and those decreasing pCO2 such as enhanced gas expulsion, autumnal primary production, temperature decrease, and CO2 transfer to the gaseous phase.

In spring, we observed a sharp decrease of pCO2 that is tightly related to sea ice melting and related brine dilution. We also show that carbonate dissolution could induce pCO2 changes comparable to those attributed to dilution. In summer, as sea ice becomes isothermal, dilution effects level off. At that stage, uptake of atmospheric CO2 and mixing with underlying water (with pCO2 values ranging from 380 to 430 ppm) should maintain pCO2 at or above the saturation level. However, sustained primary production appears to be large enough to maintain low pCO2 within the sea ice. One should note that we did not address CO2 uptake from the underlying to the ice driven by bottom sympagic communities and CO2 transfer from the...
underlying water to the atmosphere through the ice that are considered insignificant [Loose et al., 2011; Rutgers van der Loeff et al., 2014]. These processes act as sink for atmospheric CO$_2$. Using the relative contribution of the main processes driving pCO$_2$ in sea ice, we derived an uptake of 0.024 Pg C for spring and summer. This assessment corroborates the estimate from in situ CO$_2$ flux measurements scaled with the ice temperature simulated with the NEMO-LIM3 model that is assessed to 0.029 Pg C. Both assessments compare favorably with the assessments of Rysgaard et al. [2011] of 0.019 and 0.052 Pg C yr$^{-1}$ for the CO$_2$ fluxes over the whole Southern Ocean, respectively “without” and “with” CaCO$_3$ formation in sea ice.

We consider that the fluxes derived from the NEMO-LIM3 are the best estimate to date of the uptake of atmospheric CO$_2$ by Antarctic sea ice in spring and

Table 4. Spring and Summer Air-Ice CO$_2$ Fluxes Assessed With the NEMO-LIM3 Model From 1997 to 2009

<table>
<thead>
<tr>
<th>Year</th>
<th>Total CO$_2$ Sink (Pg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>0.0273</td>
</tr>
<tr>
<td>1998</td>
<td>0.0272</td>
</tr>
<tr>
<td>1999</td>
<td>0.0289</td>
</tr>
<tr>
<td>2000</td>
<td>0.0301</td>
</tr>
<tr>
<td>2001</td>
<td>0.0274</td>
</tr>
<tr>
<td>2002</td>
<td>0.0301</td>
</tr>
<tr>
<td>2003</td>
<td>0.0299</td>
</tr>
<tr>
<td>2004</td>
<td>0.0293</td>
</tr>
<tr>
<td>2005</td>
<td>0.0298</td>
</tr>
<tr>
<td>2006</td>
<td>0.0287</td>
</tr>
<tr>
<td>2007</td>
<td>0.0291</td>
</tr>
<tr>
<td>Mean</td>
<td>0.0289</td>
</tr>
<tr>
<td>STD</td>
<td>0.0011</td>
</tr>
</tbody>
</table>

Figure 6. Average September to December distribution of the ice-air CO$_2$ flux over the Antarctic sea ice zone (mmol C m$^{-2}$ d$^{-1}$) as simulated by the sea ice model, during the 1997–2007.
Acknowledgments

The authors appreciated the kindness and efficiency of the crews of R.V. Aurora Australis, R.V. Polarstern, and R.V. N.B. Palmer. We are grateful to Tom Trull, Steve Ackley, and two anonymous reviewers for their useful comments that improved the quality of the manuscript. This research was supported by the Belgian Science Policy (BELCANTO projects, contract SD/CA/03A), the Belgian French Community (SIBCLIM project), the F.R.S.-FNRS and the Australian Climate Change Science Program. NXG received a PhD grant from the Fonds l’Industrie et l’Agriculture and now benefits from a COFUND Marie Curie fellowship “Back to Belgium Grant.”

Summer. Accordingly, sea ice provides an additional significant sink of atmospheric CO2 in the Southern Ocean up to 58% of the estimated net uptake of the Southern Ocean south of 50°S (0.05 Pg C yr⁻¹) [Takahashi et al., 2009]. Antarctic pack ice appears to be a significant contributor of CO2 fluxes in the Southern Ocean. We believe that our approach is conservative since we excluded areas with ice concentration below 65% and flooded zones.

References

Cox, G. F. N. and W. F. Weeks (1983), Equations for determining the gas and brine volumes in sea-ice samples,
