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Time-series of ecological and exploitation indicators collected from 19 ecosystems were analysed to investigate whether there have been
temporal trends in the status of fish communities. Using linear and non-linear statistical methods, trends are reported for six indicators
(mean length of fish in the community, mean lifespan, proportion of predatory fish, total biomass of surveyed species, mean trophic level
of landings, and inverse fishing pressure), and the redundancy of these indicators across ecosystems is evaluated. The expected direction
of change for an ecosystem that is increasingly impacted by fishing is a decline in all indicators. A mixture of negative and positive
directions of change is recorded, both within and among all ecosystems considered. No consistent patterns in the redundancy of the
ecological indicators across ecosystems emerged from the analyses, confirming that each indicator provided complementary information
on ecosystem status. The different trends in indicators may reflect differing historical exploitation patterns, management, and environ-
mental regimes in these systems. Commitment to monitoring programmes and development of system-specific baseline, target, and
threshold reference levels are required. Improved understanding of the responsiveness and performance of ecological indicators to
management actions are needed to address adequately whether ecosystems are recovering from, or being further impacted by,
fishing, and whether management targets are being met. The relative effects of multiple environmental and ecological processes as
well as multiple human-induced stressors that characterize exploited ecosystems also need to be quantified.
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Introduction
An ecosystem approach to fisheries (EAF) requires basic under-
standing of the important processes controlling marine ecosystem
productivity. A necessary first step towards understanding any
ecosystem in this context is to determine key indicators of
aspects of ecosystem state that respond to fishing pressure
(Trenkel and Rochet, 2003; Jennings, 2005; Link, 2005).
Obtaining such understanding has proved difficult because of
the complexity of marine ecosystems, their many components
and different drivers, and the sheer volume of data required.
Ecosystem considerations in a marine scientific and management
context have been extant for more than a century (Baird, 1873),
but making them operational in the context of EAF has remained
a key challenge. One approach has been to examine patterns in

indicators of ecosystem structure and functioning over time (size-
based, species-based, and trophodynamic indicators) to determine
whether changes have been consistent with theoretical expec-
tations for highly impacted, exploited systems. Research needs to
be extended, however, to consider a suite of ecological indicators
that encompass the key processes of exploited ecological systems
with an improved understanding of their link to fishing pressure.
Ultimately, we need to seek general relationships between pressure
and state in the world’s marine ecosystems; explicit use of indi-
cators can facilitate this understanding.

The comparative approach has provided significant insights
into understanding marine ecosystem functioning, with states
(Hunt and Megrey, 2005; Moloney et al., 2005; Coll et al., 2006;
Shin et al., 2010a) and trends (Bianchi et al., 2000; Shannon
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et al., 2009) having been compared among ecosystems. In many
respects, comparisons among a wide range of ecosystems can
serve as ad hoc replicate responses akin to an experiment, high-
lighting common basic features as well as key differences, and
giving insight into the effects of pressures that influence ecosystem
processes. Such comparative analyses allow an opportunity for
taking a broader ecosystem perspective and permit the drawing
of generalizations about responses that will help identify ecosystem
indicators and also help to support implementation of an EAF.

Using the comparative approach, we explore temporal vari-
ation in a set of ecosystem indicators: mean length of fish in the
community, mean lifespan, proportion of predatory fish, total
biomass of surveyed species, mean trophic level of landings, and
inverse fishing pressure. We investigate two specific features, the
trends of indicators over time and the similarities (or redundan-
cies) of temporal responses the indicators may display under the
same fishing pressure. Various methodological approaches to
deal with trend analyses have been proposed and applied to eco-
logical data. The significance of the trend (whether the predicted
slope is significantly different from zero) and the direction of
the trend are key parameters in characterizing whether fishing
pressure is likely to be increasingly impacting ecosystems or
whether there are signs of recovery. As ecological time-series
often cover relatively short periods, are frequently characterized
by strong autocorrelation attributable to various underlying eco-
logical processes, and contain non-linearities, any single statistical
method may (or may not) be appropriate.

The overall objectives of this work are to (i) explore the recent
changes of ecosystem indicators using both linear and non-linear
statistical methods for quantifying trends, (ii) compare and con-
trast trends in indicators across ecosystems, and (iii) address the
redundancies and/or complementarities of indicators by looking
at similarities in their temporal dynamics.

Methods
In all, 19 exploited ecosystems were included in this analysis
(Table 1). They were upwelling, high latitude, temperate, and tro-
pical marine ecosystems, and covered a range of low to highly pro-
ductive areas, located in the Atlantic, Pacific, and Indian Oceans,
and in the Mediterranean Sea. A description of each ecosystem
is provided in Shin et al. (2010b) and Shannon et al. (2010) for
upwelling and comparable systems. A set of six indicators was ana-
lysed to calculate the trends: the mean length (referred to as fish
size) and mean lifespan (lifespan) of surveyed species, the pro-
portion of predatory fish (% predators), the trophic level of
landed catches (trophic level), the total biomass of surveyed
species (biomass), and biomass/landings (inverse fishing
pressure). A description of how to quantify and analyse these indi-
cators is presented in Shin et al. (2010b), and a description of the
origin of the data in www.indiseas.org. The list of indicators, their
equations, expected direction of change following increased
exploitation, and corresponding management objectives, are pro-
vided in Table 2.

Standardization and scaling of indicator time-series
When assessing temporal trends, the associated time-scale must be
specified (e.g. the whole time-series or a recent period). Usually,
the term trends implicitly refers to a linear approximation of time-
series. Here, however, trend refers to either a significant linear or
non-linear change in an indicator over the past 10 years (1996–
2005), although for comparison we also estimate trends over a

longer period (1980–2005, or the full length of the time-series
where this is shorter). The choice of the length of time-series
was a compromise guided by preliminary results. Short-term
trends over the past 5 years were mostly non-significant. For
most indicators, trends were not detectable across a 5-year
period for several reasons: some ecosystems are already severely
impacted so we could not expect a clear trend, data are missing
in some cases for recent years so the trend is actually estimated
over less than 5 years, the variance of each indicator is high, and
the statistical power for detecting trends is low for indicator
series ,10 years (Nicholson and Jennings, 2004). On the other
hand, time-series spanning the longer period (1980–2005) were
not available for sufficient of the ecosystems to carry out full cross-
comparisons (Figure 1). Therefore, we emphasized the 1996–2006
time-frame for comparative purposes, and report trends for the
longer period.

Standardization of the indicators is essential for comparative
purposes (inter-indicator and inter-ecosystem comparisons). All
indicator time-series were normalized by subtracting the mean
value of that indicator over the period examined and dividing
by the standard deviation (Y–Ymean)/Ystd (Figure 1). This
enabled comparisons to be made between indicators (compari-
son of sensitivities) and ecosystems (comparison of fishing
impacts). The slope of the trends obtained from normalized
values is equivalent to the slope obtained from the original
values when they are expressed as a ratio of the standard
deviation (Y/Ystd).

Table 1. Ecosystems considered in this study (for further details
see Shin et al., 2010b, and Table 2).

Ecosystem Geographic area
Large marine
ecosystem

1 Barents Sea Northeast Atlantic Barents Sea
2 Bay of Biscay Northeast Atlantic Iberian Coastal
3 Bering Sea, Aleutian

Islands
Northeast Pacific East Bering Sea

4 Central Baltic Sea Northeast Atlantic Baltic Sea
5 Eastern Scotian

Shelf
Northwest Atlantic Scotian Shelf

6 Guinean EEZ East Central
Atlantic

Guinea Current

7 Irish Sea Northeast Atlantic Celtic–Biscay Shelf
8 Mauritanian EEZ East Central

Atlantic
Canary Current

9 North-central
Adriatic Sea

Central
Mediterranean

Mediterranean

10 Northeast United
States

Northwest Atlantic Northeast US
continental shelf

11 North Sea Northeast Atlantic North Sea
12 Northern

Humboldt
Southeast Pacific Humboldt Current

13 Portuguese EEZ Northeast Atlantic Iberian Coastal
14 Morocco (Sahara

coastal)
East Central

Atlantic
Canary Current

15 Senegalese EEZ East Central
Atlantic

Canary Current

16 Southern Benguela Southeast Atlantic Benguela Current
17 Southern Catalan

Sea
Northwest

Mediterranean
Mediterranean

18 Southern
Humboldt

Southeast Pacific Humboldt Current

19 West coast Canada East Central Pacific Gulf of Alaska
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Tests to detect trends
Generalized least-squares and autoregressive error analysis
Time-series of ecosystem indicators are relatively short, and
frequently characterized by strong autocorrelation, imposed as a
consequence of the ecosystem dynamics. A linear-trend model
was fitted to each of the indicator time-series using a generalized
least-squares regression framework, which models the temporal
correlations in the error using a two-stage estimation procedure
(Coll et al., 2008). Trends were estimated for two separate
periods, as stated above: 1996–2005 and 1980–2005 (or for the
whole time-series if shorter). The two-stage estimation procedure
was used to take account of autocorrelation in the residuals and to
satisfy regression assumptions. The significance of the estimated
trend (whether the predicted slope is significantly different from
zero) was then assessed. This allowed for valid inference to
assess the significance of the trend.

The procedure was as follows:

Stage 1: an ordinary least-squares (OLS) regression model was
used to fit the straight-line model y ¼ b0 þ b1 x þ 1, expressed
in matrix notation as y ¼ Xb þ e, where e � N(0,s2I), which
assumes independent and identically distributed errors.
Analysis of residuals ê ¼ y � ŷ was carried out to determine
whether statistical assumptions were met. When autocorrelated
errors were present (defined as a p-value of .0.05 in a two-
sided Durbin–Watson test), we proceeded to Stage 2 below.

Stage 2: generalized least-squares regression was used to fit the
straight-line model with more flexible assumptions about the
error terms, i.e. e � N (0,

P
). Here,

P
is a covariance

matrix based on the assumption of e having a temporal-
dependence structure following an autoregressive process of
order 1 [AR(1)]. The significance of the trend is assessed by

testing H0: b1 ¼ 0 vs. H1: b̂1 = 0, with the test statistic

t� ¼ b̂1=s.e.ðb̂1Þ:

This two-stage procedure was generally sufficient for trend esti-
mation; the time-series are relatively short and there is consider-
able flexibility in realizations of the autocorrelated AR(1) errors.

We did, however, identify cases where it proved not entirely ade-
quate (because of the potential for non-constant variance, non-
linearity, or leftover autocorrelation).

Intersection–union test
A second method for detecting trends from time-series was devel-
oped by Trenkel and Rochet (2009). It consists of fitting a non-
linear smoother to the whole indicator series to remove random
sampling noise and, if the smoother has sufficient goodness-of-fit,
calculating first and second derivatives from the smoothed time-
series and carrying out a series of tests formulated as an
intersection–union test. A parametric bootstrap is then used for
taking uncertainty in the indicator time-series into account. The
non-linear smoother is fitted as a generalized additive model,
using a thin-plate regression spline with automatic estimation of
the degree of smoothness using generalized cross-validation
(Wood, 2006). The null hypothesis in an intersection–union test
is a union of type H0: u [

S
g[G Qg, where u is the vector of

parameters of interest and Qg the set of values allowed under
the null hypotheses of each of the g ¼ 1, . . ., G tests (Casella and
Berger, 1990). The alternative hypothesis is expressed as the
intersection H1: u [

T
g[G Q

c
g with Qc

g the set of values of
the individual alternative hypotheses. Then, the global null
hypothesis is rejected only if the null hypotheses for all G tests
are rejected.

Given the time-scale considered here, specific null hypotheses
were developed with separate tests for increasing and decreasing
time-trends. These hypotheses and the resulting tests are described
below. The condition for a significant decrease or no change in the
smoothed indicator time-series over a given time-horizon is met,
i.e. the null hypothesis of an increase is rejected if the following
two conditions are met:

C1: the maximum smoothed indicator value maxðÎjÞ;
for j ¼ T �mþ 1; . . . ;T, is not found within the most
recent m years, i.e. in years T 2 4, . . ., T for m ¼ 5; and

C2: f � n of all annual slopes ordered by increasing size are
negative _̂Ij � 0; for j ¼ 1; . . . ; f � n;

Table 2. List of ecosystem indicators used in trend analyses, along with the expected trends from increasing exploitation and
corresponding management objectives.

Indicator
Headline
label Calculation, notations (units)

Expected
trend

Management
objectives Management direction

Total biomass of
species surveyed

Biomass B (t) D RP Reduction in overall fishing
effort and quotas

1/(landings/
biomass)

Inverse
fishing
pressure

B/Y retained species D RP Reduction in overall fishing
effort and quotas

Mean length of
fish in the
community

Fish size
P

i Li=N (cm) D EF Reduction in overall fishing
effort, decreased fishing effort
on large fish species

TL landings Trophic level
P

sðTLsYsÞ=Y D EF Decreased fishing effort on
predator fish species

Proportion of
predatory fish

% predators Proportion of predatory
fish ¼ biomass of predatory fish/
biomass surveyed

D CB Decreased fishing effort on
predator fish species

Mean lifespan Lifespan
P

Sðagemax;s BSÞ=
P

S BS D SR Decreased fishing effort on
long-lived species

L, length (cm); i, individual; s, species, N, abundance; B, biomass, Y, catch (t); D, decline over time; RP, resource potential; EF, ecosystem structure and
functioning; CB, conservation of biodiversity; SR, ecosystem stability and resistance to perturbations.
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where Îj is the smoothed indicator value for year j, T the total
number of years in the time-series, f the proportion of years
within the n years considered in the test, and _̂Ij the first derivative
of the smoothed indicator time-series for year j, which will be
referred to as the annual slope. Condition C1 allows the whole
time-series to be incorporated into the test, even if only a
shorter recent period is being considered, e.g. n ¼ 10 and T ¼
26. Condition C2 states that the first f � n, e.g. 0.8 � 10 ¼ 8,
annual slopes of the slopes arranged in increasing order are nega-
tive or zero.

The two conditions lead to the definition of null and alternative
hypotheses for each subtest. For example, a decreasing time-trend
over the study period is declared significant if all null hypotheses of
subtests T1 and T2 corresponding to conditions C1 and C2 are
rejected (intersection condition).

In a T1 test on the location of the maximum:

H01: Îmax [ ÎT�mþ1; . . . ; ÎT ;
n o

; and

H11: Îmax [ Î1; . . . ; ÎT�m;

n o
;

H01 is rejected if the maximum value is not situated during the
final m years. In a T2 test for values of the first f � n annual
slopes sorted in increasing order:

H02:
[T

t¼T�nþ1

_̂It . 0; and H12:
\f�n

j¼1

_̂Ij � 0:

For testing an increasing time-trend, the null and alternative
hypotheses are formulated in a similar manner. For a significant
increase in the smoothed indicator time-series, the maximum in
C1 is replaced by the minimum, and in C2 � by �. Given that
the tests are carried out on smoothed (predicted) indicator
values, years with missing data are not a problem. For a more
exhaustive explanation of the application of intersection–union
tests for detecting time-trends, see Trenkel and Rochet (2009).

The method was applied for detecting time-trends over two
time-horizons: over the past 10 years (n ¼ 10, f ¼ 1) of the indi-
cator time-series, i.e. the period 1996–2005, and for a longer
period (n ¼ 26) corresponding to the years 1980–2005, or the
whole available time-series if shorter. Note that the same period
was considered for all indicators, even if a longer series existed
for a subset. In both cases, m was set to 5. For the longer period,
several values of f were tested, f ¼ f0.65, 0.75, 0.85g. Hence eight
tests (four for increasing and four for decreasing time-trends)
were carried out for each indicator time-series for each system.
A risk level of a ¼ 0.05 was used for all tests. In the parametric
bootstrap, given that indicator time-series had no associated
measures of uncertainty, a coefficient of variation (CV) of 3%
was assumed for all years and indicators.

Tests to detect redundancy between indicators
Multivariate analysis of indicator time-series
Redundancy of indicators can be assessed in a simple manner
based on the pairwise correlation of indicators. In a given eco-
system, any two indicators that are strongly correlated (regard-
less of the direction) can be classified as redundant, and the
strongly correlated indicator can safely be excluded from
further consideration because it does not contain extra

information. Assessing the redundancy of multiple indicators
across multiple ecosystems can be done using some multivariate
techniques. To assess the redundancy of indicators, two steps
were followed. The initial step involves computing pairwise cor-
relations (Pearson’s product moment correlation), taking the
whole time-series of each indicator. The multivariate pairwise
correlations across ecosystems were translated into inter-
ecosystem resemblance matrices using Euclidean distance as a
measure of resemblance. The resulting inter-ecosystem distances
among the ecosystems were then summarized visually using
non-metric multidimensional scaling (MDS). MDS is one of
the various ordination techniques used in ecological studies.
MDS attempts to map n-dimensional (n, number of variables;
variables in this case are a pair of ecosystem indicators) distri-
bution of samples (in this case ecosystems) into smaller dimen-
sions (usually 2–3). It is an iterative process. The stress value
indicates how well the n-dimensional distance between ecosys-
tems is preserved in the two- or three-dimensional represen-
tation of the relative location of ecosystems. A higher stress
value is an indication of poor representation in the lower
dimension. If the stress value is .0.2, two-dimensional rep-
resentation is generally not recommended (Clarke and
Warwick, 2001). The analysis was done in R and PRIMER-E
statistical software (Clarke and Gorley, 2006).

Mutual-information analysis
Measuring mutual information involves comparing the rhythms
of two time-series to quantify their degree of dynamic cohesion
(Cazelles, 2004). High values of mutual information mean that
the two time-series fluctuate at the same pace, showing either syn-
chronized or opposing phases. For a pair of ecosystem indicators,
mutual information can be interpreted as a measure of redun-
dancy, because it represents the extent of common information
the two variables carry.

Calculating mutual information is straightforward. The
respective rhythm of two time-series X(t) and Y(t) is found by
translating their fluctuations into “peak”, “trough”, “decrease”,
and “increase” symbols (Haydon et al., 2003). From the corre-
sponding symbolic series obtained, S(t) and U(t), mutual infor-
mation is given by the equation:

ISU ¼ HS þHU � HSU ;

with HS and HU the entropy of S and U, and HSU their joint
entropy. The equations for entropy and joint entropy are

HS ¼ �
Xk

i¼1

pðSiÞ log2½pðSiÞ�;

with k the total number of symbols and p(Si) the probability of
observing the symbol i along the symbolic series S, and

HSU ¼ �
Xk

i¼1

Xk

j¼1

pðSi;UjÞ log2½pðSi;UjÞ�;

where p(Si, Uj) is the probability of observing at the same time the
symbol i on the symbolic series S and j on the symbolic series U.

Statistical significance was computed by generating sets of sur-
rogate data from the original time-series under the null hypothesis
that any co-occurrence of peaks, troughs, increases, and decreases
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can be explained by chance only. A null distribution of mutual
information is then built, from which 95% quantiles are extracted
(see Cazelles, 2004, for more detail).

Results
Trends
Linear fits to time-series of ecological and exploitation indicators
revealed a mixture of negative and positive trends along with the
absence of temporal change, after correcting for autocorrelation
where necessary (Figure 2). In 7 of the 19 ecosystems, there were
significant negative trends in the indicators (a ¼ 0.05). Only one

of the ecosystems, the southern Benguela, experienced significant
negative trends in more than one indicator over the period
1996–2005 (lifespan, proportion of predators, and trophic level
of catch). However, of these indicators, only trophic level had a
contiguous dataseries with .4 years. In contrast, ten of the ecosys-
tems experienced significant positive trends in at least one indi-
cator. Moreover, all ecosystems demonstrated a mixture of
positive and negative changes in the indicators, except the west
coast Canada (all positive) and the North Sea, both of which
experienced reductions (although not significant at a ¼ 0.05) in
all ecological indicators, and a significant increase in one exploita-
tion indicator (inverse fishing pressure). The significance level

Figure 1. Normalized time-series (1980–2005) of indicators for several high-latitude, temperate, tropical, and upwelling ecosystems in the
study. The box indicates the period used for short-term trend analysis. Note that short-term (1996–2005) time-series were normalized
separately for analyses, but that the plots show the normalized medium-term time-series (1980–2005).
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affects whether or not a linear trend is detected. At a significance
level of a ¼ 0.1, there was a higher incidence of negative (14)
and positive (19) trends in total for all indicators and ecosystems
(Table 3). When the medium-term period (1980–2005) was used
for detecting linear trends, more trends were detected (a ¼ 0.05),
with a much higher prevalence of declining trends (Figure 3).
Short-term trends were generally steeper than medium-term
trends.

Several reasons may have influenced the statistical ability to
detect trends. First, the time-series were relatively short, and short-
term trends are likely to capture recent variability better than the
long-term gradual change. Second, 12% of the indicator time-
series violated the assumption of normality required for OLS
regression, and 5% did not follow the linearity assumption. In

35% of the indicators, autocorrelation needed to be taken into
account (Table 3). In all, 20% of the trends were identified to be
significant at a ¼ 0.05 (22 indicators across 19 systems, and 6 indi-
cators each, with 4 values missing).

The intersection–union test method revealed even fewer sig-
nificant changes in indicators over the 10-year period (8 years
for the Morocco–Sahara coastal ecosystem; Table 4): across the
19 systems and 6 indicators, just 14 time-trends were significant,
belonging to ten systems, with mainly one significantly changing
indicator per system. No significant time-trend in any indicator
was found for the north-central Adriatic Sea, the Baltic Sea,
the Barents Sea, the southern Benguela, the Bering Sea, the
southern Catalan Sea, the Mauritanian EEZ, and the Saharan
coastal ecosystems. The length of the available time-series

Figure 1. Continued.
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varied considerably between systems, only five systems spanning
the longer period 1980–2005 (Table 4). Hence, when consider-
ing time-trends over longer periods, the results cover different
time-spans. Taking all test results together across systems and
indicators, a clear negative relationship between the number of
years considered in the hypothesis test ( f � n in T2) and the
proportion of significant time-trends was found, indicating
that the conditions used for building the null hypotheses for
the intersection–union test are more suited for shorter-term
trends. Therefore, this method was used for evaluating trends
for the period 1996–2005 only.

Redundancy
Except the widespread correlation between biomass and the
exploitation indicator (inverse fishing pressure), the pattern of
redundancy between all other indicators varied among ecosystems.

Therefore, any two indicators could be redundant (strongly corre-
lated positive or negative) in certain ecosystems, while remaining
weakly correlated in others. For example, the cross-correlations
between fish size, trophic level, lifespan, and % predators were
strong in the Baltic Sea (see Figure 1 for a comparison of time-
series). In the North Sea, Irish Sea, Baltic Sea, and eastern
Scotian Shelf, correlations between fish size and trophic level
were strong. Correlations between fish size and biomass were posi-
tive in the north-central Adriatic Sea, the eastern Scotian Shelf, the
southern Humboldt, and the Senegalese EEZ, but were negative in
the southern Catalan Sea, the North Sea, and the Irish Sea. The
MDS results were fairly inconclusive in terms of representing
clear-cut groupings of similarities in pairwise indicator
correlations across systems in two dimensions. A relatively high
stress-value (0.18) indicated that a two-dimensional represen-
tation may not be adequate. The results of principal components

Figure 2. Linear trends of indicators over the short term (1996–2005) for each ecosystem, using generalized least-squares and autoregressive
error (Table 2). Grey represents an increasing and black a decreasing trend over time. Solid boxes indicate that trends were significantly
different from zero (a ¼ 0.05) and hatched boxes indicate otherwise. LG, mean length; LS, mean lifespan; Bp, percentage predators; B, total
biomass; TL, mean trophic level of landed catch; F, inverse fishing pressure.
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analysis (PCA) on pairwise correlations by ecosystem type
matrix were also examined and revealed a similar representation
of ecosystems in two dimensions, with less than half the
variability (46%) explained by the first two principal components
(not shown).

Mutual information, in terms of peaks and troughs of indi-
cators, was significant in at least one pair of indicators for all eco-
systems considered. Five of the indicator pairs were significant in
five or more ecosystems (Table 5). Four of the 19 ecosystems
(Barents Sea, Bering Sea, southern Benguela, and southern
Humboldt) had strong associations in five or more indicator
pairs. The highest prevalence of mutual information was
between inverse fishing pressure and biomass, largely because
the latter indicator is used as part of the calculation of inverse
fishing pressure. Other pairs of indicators expected to be comp-
lementary in ecological terms included % predators and lifespan.
However, according to the mutual-information approach, a
number of indicators that intuitively should be related (although
these were correlated), such as fish size and trophic level, were
non-redundant.

To evaluate whether ecosystems could be grouped based on
similarity of temporal trends, results for the periods 1980–2005
and 1996–2005 for linear and 1996–2005 for non-linear trends
were combined into a matrix, where significant (a ¼ 0.05)
trends were coded as either –1 or þ1 for each ecosystem, and non-
significant trends were coded as 0. The same approach was used to
group based on both sets of redundancy results, where pairwise
correlations .0.5 and significant mutual information between
the two indicators were coded as 1 and 0 otherwise. A dissimilarity
matrix based on Euclidean distances was then computed followed
by hierarchical cluster analysis with the R packages “hclust” and
“pvclust”, using the “ward” agglomeration method. Figure 4a
shows that ecosystems could be grouped into three clusters,
although the strength of these clusters was weak (p , 0.2). The
first group consisted of ecosystems located in high latitude, tem-
perate, and tropical regions. These were ecosystems that did not

experience drastic changes in the indicators during the time-
windows considered. This group also contained the southern
Humboldt, north-central Adriatic Sea, the eastern Scotian Shelf,
the Baltic Sea, the southern Catalan Sea, and the Portuguese
EEZ. All the latter ecosystems experienced changes in fish size
and biomass. The second group contained the northern
Humboldt, West coast Canada, and the Guinean EEZ ecosystems,
which all experienced increases in the trophic level of catch.
Finally, the southern Benguela and Saharan coastal ecosystems
experienced declines in the trophic level of the catch. The
Northeast United States, North Sea, and Irish Sea all experienced
decreases in fish size accompanied by increases in biomass
over time.

Figure 4b shows that two groups emerged based on both sets of
redundancy analyses (p , 0.10). The first group tended to have
greater overlap in the redundancy lifespan and % predators, and
either lifespan and fish size or trophic level indicators. The
second group tended to have a greater degree of redundancy
between fish size and inverse fishing pressure, fish size and
trophic level, and fish size and biomass. The two groups over-
lapped in their redundancy between inverse fishing pressure and
biomass.

Discussion
All the ecosystems considered in this study were exploited long
before the beginning of the time-series considered here (Bundy
et al., 2010). Therefore, the focus of this study was to identify
whether there have been further decreases in the indicators
during the most recent time-frame (1996–2005), as opposed to
the general detection of impacts. Using multiple methods and a
cross-ecosystem comparative approach revealed that recent
trends in ecosystem indicators are not all unanimous or synchro-
nously declining. However, significant decreases in one or more of
the ecological indicators during the years 1996–2005 from either
the linear or non-linear methods were detected for many of the
ecosystems: the central Baltic Sea, the southern Benguela, the

Table 3. Trends (reported as slopes) in ecosystem indicators over 10 years (1996–2005) using generalized least-squares and autoregressive
error.

Ecosystem Fish size Lifespan % predators Biomass Trophic level Inverse fishing pressure

NC Adriatic Sea 20.22a 20.03a 20.12 20.22a,n,l 0.18a 20.26a
Central Baltic Sea 0.07 0.04 20.10 20.25a 20.04a 0.07a
Barents Sea 0.21a,n 0.22a 20.21a,n 0.22a,n 20.03a 0.24a
Bay of Biscay 0.02 – 0.15 0.17 0.19a 20.06
Southern Benguela 20.15 20.32a 20.32 0.31a 20.30 0.10a,l
Bering Sea 0.21 0.05a,l,n 20.09 0.04 0.04 20.16
West coast Canada – 0.10a,l,n 0.16a 0.22 0.05 0.19
Southern Catalan Sea 20.17 0.20a,n 0.31 20.18 0.25 0.19
Southern Humboldt 0.29 0.25 20.18 20.13a -0.23 0.17a,l,n
Guinean EEZ 0.06 0.27a 0.21 0.08a 20.18 20.12
Irish Sea 20.18 0.31 0.07a 20.03 -0.35a,n 0.22
Mauritanian EEZ 20.08 0.06 0.01 20.11 20.20 20.20
Morocco coastal – 0.00 20.23 0.37a 20.31 0.32a,n
North Sea 20.13a,n 20.19 20.10 20.03a 20.28a 0.31
Northern Humboldt – 20.28a,n 0.06 0.27a,n 0.05 0.17
Portuguese EEZ 0.29 0.00a,n 0.18 20.02 0.17a 0.21
Eastern Scotian Shelf 20.22a 0.13 0.08 0.00 0.14 0.18
Senegalese EEZ 0.07 0.06 20.02 20.27 0.18 20.21
Northeast United States 20.10 20.10 20.01 0.14 20.11 20.16

Significance levels are shown emboldened (a ¼ 0.1) and underlined (a ¼ 0.05). a, adjusted for autocorrelation; n, normality assumptions violated; l, linearity
assumptions violated.
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southern Catalan Sea, the southern Humboldt, the Irish Sea,
Saharan coastal, the northern Humboldt, the eastern Scotian
Shelf, the Senegalese EEZ, and the Northeast US shelf (Table 6).
This could suggest that these ecosystems are still experiencing
increases in pressure and that current management plans are not
stringent enough or have not been established long enough to
promote recovery.

No significant recent changes were detected for the Barents Sea,
the Bay of Biscay, or the Bering Sea ecosystems over the period
1996–2005, suggesting that increasing pressure has been halted
but that there is no sign of recovery. It may be that a stable alterna-
tive state has been reached (Choi et al., 2004), recovery is very slow,
or that changes were not detected for other reasons (low statistical
power, observation error, environmental forcing, data quality;
Jouffre et al., 2010).

Positive trends were detected either in isolation or in combi-
nation with declines in other indicators. Positive trends were

detected for West coast Canada (biomass, % predators), Guinean
EEZ (lifespan, fish size), Portuguese (fish size, biomass), and the
North Sea (biomass, inverse fishing pressure), and a mixture of
positive and negative trends were detected for many of the ecosys-
tems. It is important to note that this does not necessarily imply
recovery, because in cases where ecosystems are mainly exploited
for their small pelagic fish or invertebrates, increasing % predators,
mean trophic level of the catch, mean length, and mean lifespan will
result when these organisms are depleted. This appears to be the
case for the southern Catalan (biomass2, % predatorsþ, trophic
levelþ), and possibly also the northern Humboldt (lifespan2,
biomassþ, % predatorsþ) and southern Humboldt (trophic
level2, fish sizeþ) ecosystems (Arancibia and Neira, 2005), but
see Coll et al. (2010) for further discussion. In the North Sea and
Irish Sea, biomass has increased alongside a reduction in fishing
pressure and a continued decline in fish size. This could be due
to the indirect effects of fishing that have caused prey release

Figure 3. Linear trends of indicators over the medium term (1980–2005) for each ecosystem, using generalized least-squares and
autoregressive error. Grey represents an increasing and black a decreasing trend over time. Solid boxes indicate that trends were significantly
different from zero (a ¼ 0.05) and hatched boxes indicate otherwise. LG, mean length; LS, mean lifespan; Bp, proportion of predators; B, total
biomass; TL, mean trophic level of landed catch; F, inverse fishing pressure.
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and/or enhanced survival of recruits (Blanchard et al., 2005; Daan
et al., 2005) rather than biomass recovery.

Conclusions on whether or not the ecosystem indicators were
decreasing over time rely heavily on the type and power of the

Table 4. Trends in ecosystem indicators over 10 years (1996–2005) using intersect–union tests (a ¼ 0.05).

Ecosystem Fish size Lifespan % predators Biomass Trophic level Inverse fishing pressure N

NC Adriatic Sea 24
Baltic Sea 26
Barents Sea 22
Southern Benguela 16
Bering Sea 24
Biscay of Biscay NA 2 12
Southern Catalan Sea 26
Guinean EEZ þ 13
Irish Sea þ 16
Mauritanian EEZ 16
Morocco coastal NA 8
Northeast United States 2 þ 26
Northern Humboldt NA þ 23
North Sea þ þ 21
Portuguese EEZ þ 25
Scotian Shelf 2 26
Senegalese EEZ 2 20
Southern Humboldt 2 13
West coast Canada NA þ þ 26

Blanks, non-significant changes; NA, no data available; þ , significant increase; 2, significant decrease; N, total length of time-series considered (including
missing years).

Table 5. Number and names of ecosystems in which redundancy
was significant (a ¼ 0.05) for each pair of indicators, based on
mutual information.

Redundant indicators Ecosystems

Lifespan vs. fish size 4 ¼ Barents Sea, Mauritania, southern
Benguela, southern Humboldt

% predators vs. fish size 3 ¼ Senegalese EEZ, southern Benguela,
southern Catalan Sea

% predators vs. lifespan 6 ¼ Bering Sea, central Baltic Sea,
Mauritania, North Sea, southern
Benguela, southern Catalan Sea

Biomass vs. lifespan 5 ¼ Bering Sea, eastern Scotian Shelf, Irish
Sea, southern Benguela, southern
Humboldt

Biomass vs. % predators 4 ¼ Bering Sea, southern Benguela,
southern Catalan Sea, Barents Sea

Trophic level vs. fish size 1 ¼ Bay of Biscay
Trophic level vs. lifespan 1 ¼ Northeast United States
Trophic level vs. %

predators
1 ¼ Central Baltic Sea

Inverse fishing pressure
vs. lifespan

5 ¼ Bering Sea, eastern Scotian Shelf,
Northeast United States, Morocco
(Sahara coastal), southern Humboldt

Inverse fishing pressure
vs. biomass

10 ¼ Barents Sea, Bering Sea, Guinean EEZ,
Irish Sea, north-central Adriatic Sea,
Northeast United States, North Sea,
southern Humboldt, northern
Humboldt, West coast Canada

Biomass vs. fish size 5 ¼ Mauritania, southern Catalan Sea,
southern Humboldt, Baltic Sea, Guinean
EEZ

Trophic level vs. biomass 4 ¼ Barents Sea, Bay of Biscay, northern
Humboldt, eastern Scotian Shelf

Inverse fishing pressure
vs. fish size

4 ¼ Guinean EEZ, Portuguese EEZ,
Senegalese EEZ, southern Humboldt

Inverse fishing pressure
vs. % predators

2 ¼ Barents Sea, Bering Sea

Inverse fishing pressure
vs. trophic level

2 ¼ Bering Sea, southern Benguela

Figure 4. Cluster dendrograms of ecosystems based on (a) all
indicator trend results (1980–2005 and 1996–2005 for linear, 1996–
2005 for non-linear-trend analyses), and (b) both sets of redundancy
results (correlation of indicators and mutual information). Trends
were coded as þ1, 21, or 0, and redundancy was coded as either 1
or 0. Euclidean distance and Ward agglomeration methods were
used. Percentage p-value thresholds for the groups in (a) and (b)
were weak and were 80 and 90%, respectively.
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statistical test carried out. All ecosystems, except the Morocco
(Sahara coastal) ecosystem (n ¼ 8), had time-series at least 10
years long. Increasing the number of years included in the time-
window greatly affects the ability of statistical power to detect a
trend (Nicholson and Jennings, 2004). For example, in the
North Sea, the central Baltic, the Irish Sea, the southern Catalan
Sea, the north-central Adriatic Sea, and the eastern Scotian
Shelf, there were significant declines in fish size over the past 25
years—this type of pattern is well-documented by other studies
(Jennings et al., 1999, 2002; Daan et al., 2005). Over the short
term, some of these declines were still evident from a negative
slope, but they were not always significant. We cannot know
until future data are collected whether this difference is attribu-
table to a real slowing down (and eventual cessation or reversal)
of the trend as the community recovers, or whether it is simply
attributable to a lower statistical power.

The detection of trends in ecological and exploitation indi-
cators is difficult for several other reasons. First, the pressure–
state relationships between exploitation and ecological indicators
are not necessarily linear, so reference trends can be misleading.
Second, the responsiveness (time of response) of ecological indi-
cators to fishing pressure may vary for different indicators and
in some cases is difficult to determine. In addition, the responsive-
ness of an indicator may vary depending on which fishing effects
are actually occurring during the period. When smaller sizes and
lower trophic levels are targeted preferentially, an increase in the
indicators rather than expected decreases will result. Also,
the speed of change in average length will depend on the part of
the size distribution that changes: changes in small sizes are
expected to move the average faster than larger ones.

Spatial heterogeneity and shifts attributable to climate change
in fish communities as well as in fishing effort can also conceal cor-
relations, or on the contrary can bias the analysis (Blanchard et al.,
2005, 2008; Perry et al., 2005). It is therefore important to be able
to monitor indicators that match both the spatial distribution of

the resources of interest and of fishing activity ideally for suffi-
ciently long periods of time (10þ years). Moreover, because
they do not concern the same life stages and species, and
because fishing patterns can change, ecological indicators calcu-
lated from survey or from catch data do not necessarily change
in the same direction, nor do they have the same time and ampli-
tude of response to a change in fishing pressure.

Indicator dataseries are also prone to differences caused by the
quality of the underlying survey data, different calculation
methods employed for a single indicator, or differences in the
different survey gear and/or sampling seasons (Trenkel et al.,
2004). Even if the indicators used in this study have been chosen
to be as simple as possible and are based on readily available
data, in practice the quality of the data depends much on the
whole data-collection process, which varies across the ecosystems.
Currently, we lack specific meta-information and studies to assess
the quality of the indicator estimates, e.g. to quantify the ranges
of the sampling errors in each of the indicator series. We assume
that the sampling uncertainties remain lower than natural (real)
variations of the sampled variables. In certain cases and/or on
certain indicators, this assumption may not hold. Perhaps this
could explain why some expected trends are not observed, or con-
versely that certain unexpected trends are observed as a result of
sampling artefacts (Jouffre et al., 2010).

Although there was no consistent pattern in redundancy of the
ecological indicators, inverse fishing pressure (the only exploita-
tion indicator) and biomass carry mutual information in 12 of
19 ecosystems, and 13 of 19 were positively correlated with coeffi-
cients .0.5. This is not surprising because fishing pressure was
calculated by dividing total landings by biomass to standardize
for different levels of productivity across the systems to facilitate
cross-system comparisons (Shin et al., 2010b). The reason for
including inverse fishing pressure in the indicator suite was to
obtain a standardized measure of exploitation pressure across eco-
systems that also changed in the same direction as the other

Table 6. Summary and comparison of short-term (1996–2006) trends detected (significance level, a ¼ 0.05) using both linear and
non-linear (intersection–union) methods in the ecological indicators (excluding inverse fishing pressure) for the 19 ecosystems.

Ecosystem

Decrease Increase

Overall direction nLinear Non-linear Linear Non-linear

NC Adriatic Sea 5
Central Baltic Sea Biomass D 5
Barents Sea 5
Bay of Biscay 4
Southern Benguela Lifespan % predators, trophic level Biomass D . I 5
Bering Sea 5
West coast Canada Biomass % predators I 4
Southern Catalan Sea Biomass % predators, trophic level I . D 5
Southern Humboldt Trophic level Trophic level Fish size D . I 5
Guinean EEZ Lifespan Fish size I 5
Irish Sea Trophic level Lifespan Lifespan I . D 5
Mauritanian EEZ 5
Morocco SC Trophic level Biomass D ¼ I 4
North Sea Biomass I 5
Northern Humboldt Lifespan Biomass % predators I . D 4
Portuguese EEZ Fish size Biomass I 5
Eastern Scotian Shelf Lifespan D 5
Senegalese EEZ Biomass D 5
Northeast United States Fish size Biomass D ¼ I 5

The overall direction of change was established by dominance of the number of decreasing (D) vs. increasing (I) indicators detected across all indicators and
methods for each ecosystem. Blank cells indicate no significant change in direction. n, total number of indicators considered.
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indicators in the suite (negative), purely for ease of visual
interpretation. It is important to note that as an exploitation indi-
cator, our inverse fishing pressure indicator is not ideal because it
confounds both the changes attributable to pressure and ecological
status (biomass). Ideally, information on fishing effort for each
ecosystem would allow for standardization of total landings time-
series. Unfortunately, this information was not available for all the
ecosystems analysed here.

There were no clear patterns in the redundancy of the remain-
ing five ecological indicators, suggesting that as a suite they capture
complementary information on ecosystem structure and function.
The varying degree of redundancy in the indicators across ecosys-
tems might be a reflection of different historical fishing or man-
agement patterns. For example, in ecosystems where
management action has been stringent, there could be a reversal
in one of indicator (positive trend), but a lag or continued
decline in others. Such could be the case if a reduction in overall
effort resulted in an increase in biomass but perhaps not in fish
size, which could take longer to reverse especially if phenotypic
and/or genetic changes were a product of size-selective fishing
practices (Law, 2000). More work is needed to improve under-
standing on how sensitive and responsive each indicator is in its
ability to detect changes in ecosystem structure and functioning
as a consequence of changes in fishing pressure.

The influence of environmental variability and forcing is likely
to mask the effects of fishing or cause a mixture of responses
attributable to multiple causal mechanisms and stressors on eco-
systems (Halpern et al., 2008). This is especially the case for
short time-series and for eastern ocean boundary ecosystems,
where upwelling is an important process, e.g. the southern
Benguela, the southern and northern Humboldt, Portugal, and
West coast Canada (Shannon et al., 2010). In those systems, a
strong influence of environmental drivers on the suite of indi-
cators has been identified (Link et al., 2010). Other
human-induced factors (pollution, climate) causing changes in
nutrients and influencing the productivity of ecosystems may be
acting more strongly on some of the indicators (such as
biomass) than the effect of fishing alone. More research is clearly
needed on the dominance of causal stressors and the cumulative
impacts of multiple human activities on the dynamics of
ecosystems.

Conclusions, limitations, and future work
This exploratory study is one of the first undertaken to cross-
compare recent trends of ecosystem indicators worldwide.
Overall, the results are not encouraging in that there were no con-
sistent patterns across ecosystems and indicators, making it diffi-
cult to identify underlying broad-scale relationships between
exploitation and ecological indicators or to generalize across
systems. In some systems, there is evidence of increasing indicator
trends; in others, unfortunately, declines are still prevalent. There
is a clear need for management strategies to be identified that will
reverse or (at worst) halt the direction of declining trends in eco-
logical state. To do this, we need a clearer understanding of the
sensitivity and responsiveness of these indicators to fishing
pressure and management actions, while taking into consideration
natural background variability, other potential concurrent and
cumulative impacts, and uncertainty. In other words, how much
does fishing need to be reduced in order for there to be a
change in ecological state, and how well can each of these indi-
cators actually represent changes in ecological state? In order for

an EAF to be successful, system- and indicator-specific baseline,
target, and threshold reference points need to be developed for a
change in a particular indicator to be meaningful and interpretable
for management. Objectives at the EAF level need to be clarified,
and appropriate types and levels of management intervention
need to be defined to meet the objectives. Finally, there needs to
be a reliable long-term quality-assessed monitoring procedure in
place, as well as information systems that allow for both ecological
and fisheries (and other impact) data to be collected and main-
tained at the same spatial and temporal scales. Without such infor-
mation, it will not be possible to assess adequately any
improvements in ecosystem status, or whether EAF management
objectives are being met.
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