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Abstract

Background: Epidemiological evidence suggests that vitamin D deficiency is linked to various chronic diseases. However
direct measurement of serum 25-hydroxyvitamin D (25(OH)D) concentration, the accepted biomarker of vitamin D status,
may not be feasible in large epidemiological studies. An alternative approach is to estimate vitamin D status using a
predictive model based on parameters derived from questionnaire data. In previous studies, models developed using
Multiple Linear Regression (MLR) have explained a limited proportion of the variance and predicted values have correlated
only modestly with measured values. Here, a new modelling approach, nonlinear radial basis function support vector
regression (RBF SVR), was used in prediction of serum 25(OH)D concentration. Predicted scores were compared with those
from a MLR model.

Methods: Determinants of serum 25(OH)D in Caucasian adults (n = 494) that had been previously identified were modelled
using MLR and RBF SVR to develop a 25(OH)D prediction score and then validated in an independent dataset. The
correlation between actual and predicted serum 25(OH)D concentrations was analysed with a Pearson correlation
coefficient.

Results: Better correlation was observed between predicted scores and measured 25(OH)D concentrations using the RBF
SVR model in comparison with MLR (Pearson correlation coefficient: 0.74 for RBF SVR; 0.51 for MLR). The RBF SVR model was
more accurately able to identify individuals with lower 25(OH)D levels (,75 nmol/L).

Conclusion: Using identical determinants, the RBF SVR model provided improved prediction of serum 25(OH)D
concentrations and vitamin D deficiency compared with a MLR model, in this dataset.
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Received April 10, 2013; Accepted October 7, 2013; Published November 26, 2013

Copyright: ß 2013 Guo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Dr. Guo is funded by an Australian Postgraduate Award. Prof. Lucas is funded by a National Health and Medical Research (NHMRC) Career Development
Fellowship and receives research funding from Cancer Australia, NHMRC, and MS Research Australia. Prof. Ponsonby is funded by a NHMRC Research Fellowship
and receives research funding from NHMRC and MS Research Australia. The Ausimmune Study was funded by the US National Multiple Sclerosis Society, NHMRC,
and MS Research Australia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Shuyu.guo@anu.edu.au

" Membership of the Ausimmune Investigator Group is provided in the Acknowledgments.

Introduction

There have been increasing concerns about vitamin D

deficiency around the world. Epidemiological evidence suggests

that hypovitaminosis D is linked to various chronic diseases such as

colorectal, prostate and breast cancers[1,2,3], as well as cardio-

vascular diseases and diabetes[4,5,6]. Vitamin D status is assessed

by the serum concentration of 25-hydroxyvitamin D (25(OH)D),

an accepted biomarker[7]. However measuring 25(OH)D requires

blood sampling and laboratory resources for quantitative assays.

This approach may not be feasible for testing hypotheses of

vitamin D status as a risk factor for chronic disease in large

epidemiological studies.

An alternative approach for estimating vitamin D status is to

derive a predictive model based on measurements of 25(OH)D

concentration and questionnaire data on known determinants,

from a subset of the study cohort. Values for the remainder of the

cohort are then predicted, based on their questionnaire da-

ta[8,9,10]. Past studies have used multiple linear regression (MLR)

modelling to develop these predictive models. However, the final

models typically explain only a small proportion of the total

variability in 25(OH)D concentration, that is, the coefficient of

determination (R2) values from such predictive models have

ranged from 0.13 to 0.42[8,9,10,11,12,13]. In some publications,

predicted and actual 25(OH)D levels have been compared in a

validation sample, with Spearman(9,10) or Pearson(12) correlation

coefficients ranging from 0.23 to 0.51.

Recent studies on vitamin D status prediction are shown in

Table 1. These models, based on MLR, have a number of

potential limitations. For example, outliers can be highly

influential in MLR models, with large differences in parameters

dependent on inclusion or exclusion of these values. Moreover,

MLR reflects a relationship between the means of the dependent

variable and the independent variables[14], although in chronic
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disease epidemiology, we may be most interested in very low

25(OH)D values. Thus the 25(OH)D scores predicted using MLR

models may not accurately reflect an individual’s actual vitamin D

status, biasing any risk factor associations. Nevertheless, vitamin D

prediction models could have considerable potential, both in

studies examining vitamin D status in relation to disease risks and

in screening for risk of vitamin D deficiency and thus the need for

testing – but require improved prediction accuracy. Newer

modelling techniques may provide better fit and more accurate

assignment of participants to categories of vitamin D status, e.g.

deficient, insufficient, sufficient, or optimal.

Support vector regression (SVR) algorithm
Data modelling methods based on machine learning, such as

Artificial Neural Networks (ANN) and Support Vector Machines

(SVM), have been extensively used in bioinformatics and

molecular biology[15,16,17]. More recently, these techniques

have been introduced to solve medical classification and medical

prediction problems and aid clinical decision mak-

ing[18,19,20,21]. In the epidemiology domain, machine learning

algorithms also have the potential for prediction, classification and

risk factor identification. For example, this type of modeling has

been used for risk prediction of common diseases such as diabetes

and pre-diabetes[22].

The SVM algorithm was originally developed by Vapnik and

co-workers at AT&T Bell Laboratories in the 1990s[23,24]. The

underlying theory and algorithm were introduced by Elisseeff et

al. [25]. SVM methods include support vector classification

(SVC) for classification and support vector regression (SVR) for

prediction.

The SVR method differs from that of MLR in the underlying

theoretical settings. The basic idea of regression methods is to

construct an optimal regression hyperplane with n-1 dimensions

that best fits the data in an n-dimensional space. If we take the

simplest example, a two-dimensional data space can be

generated by two variables in a dataset; the regression

hyperplane is a straight line (with one dimension). As for other

conventional methods, the MLR algorithm fits a model using

the least mean squares approach to define the linear hyper-

plane[26,27]. However, the real world is much more compli-

cated than a linear correlation. Furthermore, the regression

hyperplane based on a least mean squares approach is greatly

affected by outliers. In the SVR method, these problems are

solved by 1) using integrating kernel functions (i.e polynomial,

sigmoid and radial basis functions) to add more dimensions to

lower dimensional space or add nonlinearity to the model; and

2) introducing user-specified parameters to control the trade-off

of prediction errors and flatness of the regression plane (see

Methods section). Figure 1 illustrates the difference between

MLR and SVR prediction models.

In this paper, we examine the utility of an SVR algorithm, in

comparison with a MLR algorithm, in predicting serum

25(OH)D concentration based on the determinants of vitamin

D status already identified in a population of Australian

Caucasian adults.

Materials and Methods

Study population
Data included here are from 494 participants from the control

group of the Ausimmune Study[28]. The Ausimmune Study is a

multi-centre, case-control study examining risk factors for multiple

sclerosis. The control group was randomly selected from the

Australian Electoral Roll in four different study regions. Partici-

pants completed a questionnaire including self-reported recent

sun exposure and sun protection behaviours, physical activity,

smoking history, diet and the use of supplements. Skin types

were defined by spectrophotometric measurements of skin

reflectance to calculate melanin density for exposed skin sites

(dorsum of hand, shoulder) and non-exposed skin sites (upper

inner arm, buttock) using a spectrophotometer (Minolta

2500d)[29]. Height, weight, waist and hip circumference were

also measured. Serum 25(OH)D levels were determined by

liquid chromatography dual mass spectrometry at a central

laboratory. Because the number of non-Caucasian participants

was small (n = 26), only data from the Caucasian participants in

the control group were included for the purpose of developing

the vitamin D prediction model.

Statistical analysis
The MLR model. The important determinants of vitamin D

status were defined using MLR and forward purposeful selection

of covariates, as previously described[30]. Briefly, 12 variables

were retained in the MLR environmental and phenotypic

determinants model: latitude, ambient ultraviolet radiation levels,

ambient temperature, hours in the sun 6 weeks before the blood

draw (log transformed to improve the linear fit), frequency of

wearing shorts in the last summer, physical activity (three levels:

mild, moderate, vigorous), sex, hip circumference, height, left back

shoulder melanin density, buttock melanin density and inner

upper arm melanin density. A square root transformation of the

dependent variable (serum 25(OH)D concentration) in the MLR

model was performed because of heteroscedasticity of the

residuals[30].

The SVR model. Given a dataset with n independent

variables and m observations, the MLR model can be written as

y = e(x) =W.X +b where W represents the vector of the

coefficients, X represents the vector of the independent variables,

and b is the intercept. To estimate the best fit, we minimize the

sum of the squared errors:

min
Xm

i~1

(yi{ ŷyi )
2~min

Xm

i~1

(yi{( ŴW :Xiz b̂b))2;

(where i represents the ith observation).

When the correlation between x and y is linear, the form of the

SVR algorithm is similar to that of MLR: y= e(x) =W.X +b.

However, the SVR method has two additional parameters: C and

e. The parameter C is introduced to adjust the error sensitivity of

the training data in order to avoid over-fitting; setting C to a high

value results in fewer prediction errors in the training data:

min
Xm

i~1

(yi{( ŴW :Xiz b̂b))2zC
Xn

j~1

jW 2
j j;

(where j represents the jth variable), The second parameter e is the

regularization constant, which controls the flatness of the final

model [31].The goal of SVR is to determine an optimal function

that has less than e deviation from the target values for the training

data, so that we do not count errors that are less than e, and at the

same time the regression hyperplane needs to be as flat as possible.

By using different kernel functions, which transform data into a

high dimensional space or add non-linearity, the SVR algorithm

allows application of nonlinear regression[32]. The Radial Basis

A Novel Approach for Prediction of Vitamin D Level
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Table 1. Recent studies using a multiple linear regression prediction model for 25(OH)D concentration.

Reference Cohort Sample Model covariates

R2 for the

model Validation

Giovannucci et al, Health Professionals Male Geographical region 28% Measured plasma 25(OH)D level rose across
increasing

2006 [8] Follow-Up Study (HPFS), 40–75 Dietary vitamin D intake deciles of predicted 25(OH)D score
(ptrend,0.001)

US Training set: 1095 Vitamin D supplements

Validation set: 542 Race

BMI

Physical activity level

Chan et al., 2010 Adventist Health Study-2 Male & Female Race White: 22% N/A

[11] (AHS-2), Black: 209 BMI Black: 31%

US, Canada White: 236 Skin type Total: 42%

UV season

Latitude

Erythemal zone

Total vitamin D intake

Duration of sun exposure

Percentage of body exposed

Liu et al., 2010 Framingham Offspring Male & Female Age 25.75% Spearman rho for measured 25(OH)D
concentration vs.

[9] Study, 50–70 Sex predicted score = 0.51 (p,0.001)

Massachusetts, US Training set: 883 BMI

Validation set: 845 Total vitamin D intake

Smoking status

Total energy intake

Millen et al., Women’s Health Initiative Female Langleys 21% Pearson correlation coefficient for measured
plasma

2010 Clinical Trial (WHI-CT), 50–79 Race 25(OH)D vs. predicted score r = 0.45, 95%CI:
0.40,0.49

[12] US Training set: 3055 Age The predictive model was poor at categorizing
women in the

Validation set: 1528 Waist circumference severely deficient (3%) and sufficient (3%) range
of vitamin

Recreational physical activity D status.

Total vitamin D intake

Peiris et al., 2011 Veterans Administration Male Triglyceride 12.9% The model correctly classified vitamin D
deficiency status

[13] Center patients Race for 70.6% patients; only 30.6% of those who
were actually

Southeastern US Total cholesterol deficient were correctly identified as deficient.

BMI

Calcium level

Number of missed
appointments

Bertrand et al., Nurses’ Health Study NHS: female, 30–55 y Race NHS: 33% Spearman rho for measured 25(OH)D
concentration vs.

2012 [10] (NHS) Training set:2246 UV-B flux NHSII: 25% predicted score were 0.23, 95%CI: 0.16,0.29 for
NHS, 0.42,

Nurses’ Health Study II Validation set:818 Dietary vitamin D intake HPFS: 28% 95%CI:0.34, 0.49 for NHSII, 0.30, 95%CI: 0.21 0.37

(NHSII) NHSII: female, 25–42 y Supplementary vitamin D
intake

(adjusted for batch, age and season of blood
draw)

Health Professionals Training set:1646 BMI

Follow-up Study (HPFS) Validation set: 479 Physical activity

HPFS: Male, 40–75 y Alcohol intake

Training set: 1255 Post-menopausal hormone use

Validation set: 841 Season of blood draw

doi:10.1371/journal.pone.0079970.t001
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Function (RBF) SVR method adopts the RBF kernel function, also

known as the Gaussian kernel, which is the same as a Gaussian

distribution function. Compared to linear SVR, the RBF SVR

method has one more parameter, c, which determines the degree

of nonlinearity[33].

For the RBF SVR modelling, the data were randomly separated

into two independent samples: the ‘training sample’ (n = 294) was

used to develop the parameters of the vitamin D prediction model

and the ‘validation sample’ (n = 174) was used for all statistical

analyses noted below. The same 12 variables were included in the

model as for the MLR modelling, described above. Parameters

were determined by grid search, i.e. exhaustive searching through

a set of parameters, followed by cross validation. The parameters

with the best model performance were selected.

Model comparison. Predicted values from the MLR model

were derived by summing coefficients multiplied by the individual

values of the covariates[8]. Predicted values from the SVR model

were derived by running the model with the individual values of

the covariates. We compared the predictions from the RBF SVR

and MLR models to measured 25(OH)D values in the ‘‘validation

sample’’ Results were reported as means, standard deviations

(SDs), minima and maxima. Mean absolute differences, i.e. the

mean of the absolute differences between the individual predicted

and measured 25(OH)D values, were calculated as an indication of

the magnitude of error. Differences between results from the RBF

SVR and MLR models were analysed with the Wilcoxon signed

rank test. The correlation between predicted and measured serum

25(OH)D concentrations was analysed using a Pearson correlation

coefficient (r). Bland-Altman plots were used to provide the mean

bias (the average of the difference between measured 25(OH)D

and prediction scores from the two compared modelling methods)

across the range of 25(OH)D levels, and 95% limits of agreement

between the methods.

We tested the accuracy of classification into categories of

vitamin D status using predicted 25(OH)D scores. Data in the

validation sample were analysed by generating the receiver

operating characteristic (ROC) curve. Sensitivities and specificities

were generated for a range of cut offs for the ROC curve. In

chronic disease epidemiology studies, ‘‘exposures’’ are often

categorised into quintiles. Thus, here individuals in the validation

set were also classified according to quintile of predicted 25(OH)D

scores and measured 25(OH)D concentration, for the purpose of

testing the performance of the two models.

Data analysis for the RBF SVR model was performed using

Matlab R2001b. Analyses for the MLR model, Pearson correla-

tion, Wilcoxon signed rank test, Bland-Altman plots and ROC

curves were performed using Stata 12.0 (Statacorp, Texas).

Results

Means, SDs, minima and maxima of predicted 25(OH)D scores

for the two models are presented in Table 2. A summary, as the

mean absolute difference between measured and predicted

25(OH)D for the two models, is also given. The mean absolute

difference between measured and predicted 25(OH)D concentra-

tions generated by the RBF SVR model was significantly smaller

than that for the MLR model (p = 0.012). Figure 2 demonstrates

the correlation between the measured and predicted 25(OH)D

concentration for the MLR (Figure 2A) and RBF SVR (Figure 2B)

models. Consistent with this, the Pearson correlation coefficients

indicated better correlation between predicted scores and mea-

sured 25(OH)D concentrations for the RBF SVR model (r = 0.74)

Figure 1. Performance demonstration of SVR and MLR in a simple scenario (two-dimensional case). The black dots indicate actual
simulation data set. The solid curve denotes SVR regress line and the dot line represents the MLR regression line. The simulation data set is randomly
generated by MATLAB.
doi:10.1371/journal.pone.0079970.g001
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than for the MLR model (r = 0.51). Bland Altman plots showed

that there was tighter agreement between measured 25(OH)D

concentration and predicted scores for the RBF SVR model than

for the MLR model: 95% limits of agreement were 249.20, 48.37

(Figure 3A) and 238.26, 31.03 (Figure 3B) for the MLR and RBF

SVR models, respectively. There was a slight negative bias across

the range of measured 25(OH)D concentrations that was greater

for the RBF SVR than the MLR predicted scores (23.62 nmol/L,

20.37 nmol/L, respectively). Predicted scores from both models

showed a greater tendency to negative bias at higher 25(OH)D

concentrations.

We compared the sensitivity of the two modelling techniques for

correctly classifying individuals as being vitamin D deficient vs.

sufficient, using different cut-points. When vitamin D deficiency

Figure 2. Correlation of measured 25(OH)D concentration (nmol/L) and predicted 25(OH)D concentration using (A) a multiple linear
regression model; and (B) a radial basis function support vector regression model.
doi:10.1371/journal.pone.0079970.g002
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was defined as 25(OH)D level of ,75 nmol/L (vs. $75 nmol/L),

both models had reasonable sensitivity, but the RBF SVR model

performed significantly better (P,0.01, Figure 4). The sensitivity

for the RBF SVR model was 81.6% compared to the MLR model

of 67.1%. The area under the curve (AUC) for the MLR ROC

curve was 0.79 (95% confidence interval (CI) 0.73–0.86) compared

with an area under the curve of 0.87 (95%CI, 0.82–0.92) for RBF

SVR. Using a 25(OH)D level of 50 nmol/L as the cut off point,

the AUC for the MLR ROC curve was 0.79 (95%CI, 0.68–0.89)

compared with an AUC of 0.86 (95%CI, 0.79–0.94) for RBF

SVR, P=0.064. Notably, however, only 13% of the test sample

were vitamin D deficient according to this cut off point (25(OH)D

,50 nmol/L) with 25(OH)D levels measured using an LC-MS/

MS assay. The superior performance of the RBF SVR model was

less apparent with the limited number of ‘positive’ cases. As

previously reported, 25(OH)D levels from a Diasorin Liaison assay

were also available for these samples[34] with the results

negatively biased compared to results from the LC-MS/MS assay,

i.e. a greater proportion of the sample ,50 nmol/L. We thus also

tested the performance of the two modelling methods using the

Liaison 25(OH)D results. Here the AUC for the curve generated

from the MLR results was 0.69 (95%CI, 0.62–0.76), compared to

that for the RBF SVR of 0.83 (95%CI, 0.77–0.89). That is, the

RBF SVR model performed significantly better than the MLR

model, P,0.0001.

In epidemiological studies, exposures are often categorised into

quintiles for analysis, so we classified predicted 25(OH)D scores

and measured 25(OH)D concentration by quintile to determine

how well the two prediction models performed in each quintile

group. For the MLR model 50.2% of the predicted 25(OH)D

scores, compared to 66.1% of predicted scores for the RBF SVR

model, fell into the same quintile as the measured 25(OH)D

values. Figure 5 shows the percentage of correct classification in

each quintile. As is illustrated in Figure 5, both MLR and RBF

SVR models performed well in predicting 25(OH)D concentration

Figure 3. Bland – Altman plots of measured 25(OH)D concen-
tration compared to predicted scores from (A) a MLR model;
(B) a RBF SVR model. The solid lines indicate the mean bias (middle
line) and 95% limits of agreement (top and bottom lines). All
measurements are in nmol/L.
doi:10.1371/journal.pone.0079970.g003

Table 2. Predicted 25(OH)D concentration and mean absolute difference between predicted and measured 25(OH)D level (nmol/
L).

Mean Standard deviation Minimum Maximum

Measured 25(OH)D level 81.71 28.33 14.2 163.3

Predicted level MLR 81.3 20.41 34.54 121.71

Predicted level RBF SVR 78.10 18.87 28.01 129.91

Mean absolute difference MLR 19.04 15.23 0.18 76.39

Mean absolute difference RBF-SVR 15.65 8.91 0.05 49.33

RBF SVR, radial basis function support vector regression (nonlinear support vector regression).
MLR, multiple linear regression.
Mean absolute difference is the average of the absolute differences between the predicted and measured values.
doi:10.1371/journal.pone.0079970.t002

Figure 4. ROC curves of MLR and RBF SVR. ROC curves showing
true-positive rates (sensitivity) plotted against the false-positive rate for
different cut off points of the quantified components of MLR (gray
diamonds) and RBF SVR (black circles). The points highlighted are
25(OH)D scores of 75 nmol/l for MLR and RBF SVR. The area under the
curve is 0.79 and 0.87 for MLR and RBF SVR respectively.
doi:10.1371/journal.pone.0079970.g004
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in the second and third quintile (Q2 and Q3). Although both

prediction models were limited in their detection of extreme values

the RBF SVR model had superior performance compared to the

MLR model for correct prediction in quintiles 1, 4 and 5. The

MLR model had very poor performance in predicting the highest

serum 25(OH)D score; the prediction accuracy for Q5 was 0%.

Figure 6 illustrates the percentage of individuals classified into

each quintile according to actual and predicted 25(OH)D

concentration. The quintile distribution of predicted 25(OH)D

concentration derived from RBF SVR model is much more

accurate than the MLR model, according to the quintile

distribution of measured 25(OH)D concentration.

Figure 5. Accuracy of predicted 25(OH)D score in each quintile of 25(OH)D concentration.
doi:10.1371/journal.pone.0079970.g005

Figure 6. Percentage of individuals classified by quintiles of measured 25(OH)D concentration and predicted 25(OH)D score.
doi:10.1371/journal.pone.0079970.g006
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Discussion

We compared the performance of MLR and RBF SVR models

for the prediction of vitamin D status, using a set of pre-

determined explanatory variables. Using the RBF SVR for

prediction of serum 25(OH)D concentration resulted in lower

mean absolute error in comparison with the MLR model. In the

validation sample we observed better correlation between

predicted scores and measured 25(OH)D concentration for the

RBF SVR model compared to the MLR model. Furthermore, the

RBF SVR method demonstrated higher sensitivity in classifying

vitamin D status as deficient/sufficient and the AUC for the RBF

SVR ROC curve was significantly larger than that for the MLR

ROC curve.

This is the first study in which serum 25(OH)D concentration

has been modelled using RBF SVR, with previous studies

focussing on MLR models. For example, Bertrand et al[10]

reported a MLR model using data from three US cohorts, with

Spearman correlation coefficients between predicted and mea-

sured 25(OH)D of 0.23, 0.40, and 0.24, respectively. In the

Women’s Health Initiative, Millen et al.[12] reported a compara-

ble correlation (0.45), using a MLR model. In the Framingham

Offspring Study, Liu et al.[9] observed a correlation of 0.51

between predicted and measured levels. Using the results from

these prediction models imposes several limitations on the accurate

estimation of ‘‘exposure’’ in chronic disease epidemiology. Such

models have substantial unexplained variability (R2=0.13–0.42)

and the predicted scores are only moderately correlated with

actual 25(OH)D levels. In previous studies, the predicted scores

were based on data that were incomplete for known determinants

of vitamin D status, such as sun sensitivity characteristics (e.g. skin

colour, ability to tan), actual sun exposure and sun exposure

behaviours (e.g. time spent outdoors and protective clothing).

Proxies such as physical activity and ethnicity were used instead of

actual sun exposure and skin colour, allowing considerable

measurement error and misclassification on key determinants.

In our study, time spent outdoors and direct measurements of

untanned skin colour were included as predictors in the MLR

model. But even so, the MLR model using these environmental

and phenotypic factors explained only a modest proportion of the

total variability in serum 25(OH)D levels (R2=0.36) and the

Pearson correlation coefficient (for predicted vs. measured values)

was 0.51. The performance of our MLR model was consistent

with the prediction models reported in the previous studies,

suggesting intrinsic limitations of the MLR models.

Here we did not use the R2 value to evaluate the performance of

the RBF SVR model, because this method is not based on a least

mean squares approach. However, using the RBF SVR model, we

observed a correlation of 0.74 between predicted scores and

measured 25(OH)D concentration. Moreover, the RBF SVR

model had higher sensitivity and performed better than MLR in

correctly identifying individuals with vitamin D deficiency.

Interestingly, the difference in sensitivity and AUC between the

two models was less when the prevalence of vitamin D deficiency

was low, i.e. with a cut-point of 50 nmol/L using the 25(OH)D

results from the LC-MS/MS assay.

Millen et al.[12] concluded that predicted 25(OH)D scores do

not adequately reflect serum 25(OH)D concentrations, and Peiris

et al.[13] argued that vitamin D status cannot be reliably predicted

and that common laboratory tests are required, especially for high-

risk groups. Our study indicates that 25(OH)D scores developed

using an RBF SVR model much better reflect actual serum

25(OH)D concentration. Although the RBF SVR model had some

limitations in predicting extreme values, generally, the estimated

vitamin D status was consistent with the measured 25(OH)D

concentration. One limitation of our analyses was that only one

validation dataset was available. Future studies testing the RBF

SVR model in a range of other populations would further advance

the understanding of its utility as a tool in epidemiological studies.

After validation in population-based datasets, tools developed from

SVM models could also be of value to primary care physicians and

others to assess the risk of vitamin D deficiency to provide a more

rational basis for vitamin D testing.

Conclusion

Our results demonstrated a statistically significant superiority of

an RBF SVR model in comparison with a MLR model for the

prediction of serum 25(OH)D concentrations in the Ausimmune

Study dataset. The accuracy of 25(OH)D scores from the RBF

SVR model was greater. Thus the RBF SVR method has

considerable promise for the prediction of vitamin D status for use

in chronic disease epidemiology and potentially other situations.
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