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Abstract

Objectives
Previous studies have found the association between rs10865331 in 2p15 area and anky-

losing spondylitis (AS). This study aimed to identify additional functional genetic variants in

2p15 region associated with AS susceptibility.

Methods
We used next generation sequencing (NGS) in 100 AS cases and 100 healthy controls to

screen AS susceptible genetic variants, and validated these variants in 620 cases and 620

controls by using imLDRTM technique for single nucleotide polymorphism (SNP)

genotyping.

Results
Totally, we identified 12 SNPs that might confer susceptibility to AS. Of those SNPs, three

(rs14170, rs2123111 and rs1729674) were nominally associated (P 0.05) with AS, but

were no longer statistically significant after Bonferroni correction. After stratified by gender,

another two SNPs (rs11428092 and rs10208769 in USP34) were associated with AS in

males but not females, though this was not statistically significant after Bonferroni correc-

tion. In addition, rs1729674, rs14170, rs2123111 and rs10208769 were in strong linkage

disequilibrium (LD) and were further enrolled in haplotype analysis. A novel haplotype

TAGA was found to be associated with a decreased risk of AS (odds ratio (OR) (95% confi-

dence interval (CI)) = 0.832 (0.705–0.982)). Beyond that, we also demonstrated a strong

relationship between rs10865331 and AS susceptibility (OR (95% CI) = 1.303(1.111–

1.526)).
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Conclusions
rs14170 and rs2123111 inUSP34 and rs1729674 in C2orf74may be associated with AS

susceptibility in Han Chinese population. USP34 and C2orf74 in 2p15 region may be AS

novel susceptibility genes.

Introduction
Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease which mainly

affects sacroiliac joints and axial skeleton, causing characteristic inflammatory back pain and

stiffness [1]. It affects 0.24% of Chinese populations [2],0.3% -0.5% of white Europeans, and

0.1% -1.4% of the global population [3], with a high prevalence in male youths [4]. Although

the precise pathogenesis of AS has not been well understood, it is now widely accepted that

genetic factors play an indispensable role in the development of AS. Several studies [5, 6] have

confirmed that human leukocyte antigen B27 (HLA-B27) gene was strongly associated with

the susceptibility of AS, but it only accounts for 16% of the total genetic risk for the disease,

suggesting that a large amount of genetic factors in AS manifestation beyond MHC region are

yet to be determined [7]. Genome-wide association studies (GWASs) [8] in European popula-

tion has reported an association between the gene desert area in chromosome 2p15 and AS

susceptibility, which has been replicated in a number of studies in Europeans [9] and Asians

[10–13]. In addition, Brown [14] reported that the contribution rate of 2p15 area on AS ge-

netic degrees was 0.54%, which was greater than that of another two AS susceptibility genes,

IL23R (0.31%) and ERAP1 (0.31%)[8]. Moreover, 2p15 has been a susceptible area with the

highest genetic contribution on AS, in addition to HLA-B27.

2p15region includes the desert area and a large number of genes. At present, only one desert

area susceptibility locus has been identified, while the remaining genetic information in 2p15

region is not clear. Also, the function of the positive locus rs10865331 identified by GWAS,

which is located in the gene desert, is unknown. However, this cannot fully explain the high

genetic contribution of this region on AS. Therefore, we hypothesized that there might be other

susceptibility genes in addition to the existing susceptibility loci in the gene desert area on 2p15.

To further assess the role of 2p15 in the development of AS in Han Chinese population, we

carried out a two-stage study by using a) next generation sequencing (NGS) for selected seven-

teen candidate genes in the discovery phase, and b) imLDRTM technique in the subsequently

promising SNP genotyping validation phase.

Methods

Study subjects
The study was approved by the ethics committees of Anhui Medical University (Hefei, China).

All participants provided their written consents after being informed about the details of the

study. We performed a two-step case-control study. The first stage included 100 AS patients

and 100 healthy controls. Additional 620 unrelated AS cases and 620 controls were recruited

in the second stage. All AS patients were from the Department of Rheumatology and Immu-

nology, the First Affiliated Hospital of Anhui Medical University, Hefei, China. All cases were

diagnosed by the skilled rheumatologist according to the modified 1984 New York Criteria

[15]. Unrelated, ethnically matched healthy participants were selected as the control group.

For each participant, 5ml of peripheral blood was obtained to extract genomic DNA for further

sequencing and genotyping analysis. Disease activity of AS patients was measured by the Bath
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Ankylosing Spondylitis Disease Activity Index (BASDAI), scored from 0 to 10, with higher val-

ues indicating the more serious disease activity. Functional impairment was measured by the

Bath Ankylosing Spondylitis Functional Index (BASFI), with a score from 0 to 10, where 0 was

no function damage and 10 was the worse functional ability.

Next generation sequencing
DNA was extracted from venous blood using a QIAGEN kit (QIAGEN, Hilden, Germany)

according to the manufacturer’s instructions. In this study, we selected seventeen major

genes containing KIAA1841, LOC339803,C2orf74,AHSA2,USP34,XPO1, FAM161A, CCT4,
COMMD1, B3GNT2,TMEM17, EHBP1,OTX1,DBIL5P2,WDPCP,MDH1, and UGP2 on
chromosome 2p15 area(2,800,000bp, chr2:61,300,001–64,100,000, UCSC, GRCh37/hg19)(Fig

1). Fast TargetTM objective regional enrichment technology was used for the exon regional

enrichment of candidate genes. And sequencing of objective regions were carried out using

the Illumina MiSeqBenchtop Sequencer(Shanghai Genesky Bio-Tech Co, Ltd;www.geneskies.

com). The quality of the output sequence data was assessed using FastQC (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc/) and sequencing adapters were trimmed using

Trimmomatic. The 3’-end nucleotides with phred quality scores below 20 were trimmed using

the fastx trimmer tool of FASTX toolkit (http://hannonlab.cshl.edu/fastx_toolkit). Trimmed

pair-end reads were aligned by USEARCH and then compared with fragment reference se-

quences (hg19) using the Blat program. BWA (v0.7.5a) was used to map the reads, followed by

SAM-to-BAM conversion, sorting, and removal of duplicates with SAMtools (v0.1.19). Com-

bined SNP calling was performed on the resulting BAM files using GATK and Varscan pro-

grams. The Annovar program was used for SNP annotation. SNPs were filtered for association

analysis using a Perl script to identify SNPs with greater than 5% allele frequency. Four different

genetic models, which included additive model, dominant model, recessive model and allele

model, were constructed for each of these SNPs. The principle of selecting targeted SNPs was

based on the minimum P value among different genetic models. A two-sided P-value less than
0.2 was considered significant meaning and met the criteria for the validating stage.

Follow-up genotyping by imLDRTM technique
In this stage, we selected twelve promising SNPs identified in the first discovery phase (shown

in S1 Table). Meanwhile, rs10865331 would also be further validated. Selected SNPs were gen-

otyped using the improved multiplex ligase detection reaction (iMLDR) technique. This

method was developed according to traditional ligase detection reaction by Genesky Biotech-

nologies Inc(Shanghai, China).In this study, a multiplex polymerase chain reaction (PCR)was

designed to amplify the thirteen SNPs loci. And the primers were listed in S2 Table. Amplifica-

tion products were used as the template for subsequent connections enzyme reaction after

purified by nuclease and shrimp alkali enzyme (ExoI/SAP). In a connection the reaction, each

site contains two 5’ terminalallele specific probes and a 3’ terminal specific probe of fluorescent

tags. The ligation products were loaded in ABI3730XL, and the raw data were analyzed by

GeneMapper4.1 (Applied Biosystems, USA).

Statistical analysis
Statistical analysis was performed using SPSS version 16.0 (SPSS, Int., Chicago, IL). The differ-

ences in allele and genotype frequencies between patients and controls were assessed by the 2

test. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. Clinical pheno-

type (BASFI or BASDAI) comparisons among the three genotypic groups were conducted

using Kruskal-Wallis H test. Logistic regression analysis was used to assess the association of
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each genotype with the risk for the disease. In addition, haplotype analysis was performed by

software Haploview 4.2 [16]. Hardy–Weinberg Equilibrium (HWE) was evaluated in controls

by 2 analysis. A P value of less than 0.05 was considered statistically significant, and Bonfer-

roni correction for multiple comparisons was applied when appropriate. P value for a truly sig-

nificant result was calculated as 0.05/n.

Results

Identification of genetic variants in seventeen biological candidate genes
In the discovery phase, 100 AS patients (79 males and 21 females, mean age (SD) = 29.5 (9.7)

years) and 100 healthy controls (80 males and 20 females, mean age (SD) = 29.91 (9.25) years)

were enrolled and the two groups were comparable in the term of sex and age (P = 0.861,

P = 0.760, respectively). In consideration of the exploratory nature of the first stage, a P-value
less than 0.2 was considered statistically suggestive. Finally, 12 SNPs with P-value<0.2

(rs14170, rs11428092, rs10208769 and rs21231111 in USP34, rs6545910, rs6748320 and
rs3736598 in FAM161A, rs777585 in AHSA2, rs3811616 inB3GNT2, rs1729674 in C2orf74,
rs55785307 in COMMD1, and rs1177284 in KIAA1841) were identified and replicated in the

follow-up study (S1 Table) (Fig 1). We did not find any novel SNPs.

Associations between predisposed variants and AS
In the second stage, we replicated the 12 variants identified in the first stage and the positive

locus rs10865331 identified by GWAS in 620 cases (515 males and 105 females) and 620

Fig 1. Schematic genomic structure on chromosome 2p15 region, and locations of the common single
nucleotide polymorphisms (SNPs) identified in this study.

https://doi.org/10.1371/journal.pone.0177080.g001
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controls (512 males and 108 females). The mean age (SD) was 28.28 (8.92) years in patients

and 27.83 (7.58) years in controls. Gender and age were comparable between the two groups

(P> 0.05 for both).

All of the SNPs were in HWE in controls except rs10865331 (P = 0.047), rs2123111 (P =

0.028), rs6545910 (P = 0.042) and rs1177284 (P = 0.016). There were statistically significant

differences in the genotype and allele frequencies at rs10865331 between AS patients and

healthy controls (P = 0.006 and P = 0.001, respectively). There were no statistically significant

differences in the genotype frequencies at other 12 SNPs loci but the allele frequencies showed

a statistically significant association at rs14170 (P = 0.033), rs2123111 (P = 0.028) and rs1729674

(P = 0.037) (Table 1). However, only the difference of allele frequencies at rs10865331 remained

statistically significant after Bonferroni correction. The results of subgroup analysis by gender

showed that there were significant differences in the genotype frequencies at rs10865331,

rs14170, rs2123111 (P<0.05 for all) and in allele frequencies at rs14170, rs11428092, rs2123111,

rs1729674 and rs10865331between male AS patients and controls (P<0.05 for all) (S3 Table).

Only the rs10865331 SNP showed significant difference in allele frequencies when comparing

female AS patients to controls (P = 0.046) (S4 Table). However, these differences were no longer

statistically significant after Bonferroni correction.

Logistic regression analysis revealed that the AA genotype of rs10865331 in the gene desert

area of 2p15 increased the risk of AS (OR (95% CI) = 1.634(1.204–2.218)) when compared

with the GG genotype. In addition, rs14170 AG genotype and rs2123111 GA genotype was

associated with a significantly increased risk of AS when compared with the AA genotype

(OR (95% CI) = 1.300(1.025–1.649)) and GG genotype (OR (95% CI) = 1.294(1.020–1.642))

(Table 2).

Furthermore, dominant, recessive and homozygous models were conducted between AS

patients and healthy controls. Significant evidence was also detected under the dominant

model for minor allele, and the minor allele carrier had an increased risk for AS compared

with homozygous wild genotype carrier at rs10865331(OR(95% CI) = 1.325(1.042–1.685)),

rs14170(OR(95% CI) = 1.302(1.041–1.629)), rs2123111(OR(95% CI) = 1.301(1.040–1.627))

and rs1729674(OR(95% CI) = 1.269(1.014–1.588)) (S5 Table). However, there was no signifi-

cant difference after Bonferroni correction. Then, we repeated the three genetic models analy-

sis after the gender stratification. For female AS cases and controls, no significant relationships

were identified under dominant, recessive and homozygous models. However, there were sig-

nificant differences among male AS cases and controls in the dominant model of rs14170 (OR

(95% CI) = 1.379(1.078–1.763)), rs10208769 (OR(95% CI) = 1.304(1.020–1.668)), rs2123111

(OR(95% CI) = 1.368(1.070–1.749)), rs1729674 (OR(95% CI) = 1.357(1.061–1.736)) and

rs10865331 (OR(95% CI) = 1.309(1.003–1.708)), in the recessive model of rs10865331 (OR

(95% CI) = 1.405(1.050–1.879)). Also, we identified significant difference between male AS

patients and controls in the homozygous model of rs11428092 (OR(95% CI) = 0.658(0.443–

0.979)) and rs10865331 (OR(95% CI) = 1.564(1.115–2.193)) (See S6 Table). Similarly, the asso-

ciations were not statistically significant after Bonferroni correction.

Linkage disequilibrium (LD) analysis showed a strong LD among rs1729674, rs14170,

rs2123111and rs10208769 (D’> 0.90 and r2> 0.80) (Table 3). These four SNPs were used to

construct two haplotypes: TAGA and GGAT. The haplotype TAGA was associated with a

decreased risk for AS (OR(95% CI) = 0.832(0.705–0.982)) (Table 4). Haplotypes with fre-

quency less than 0.03 were not considered in analysis.

We also investigated the association between the different genotypes and clinical pheno-

types including the BASDAI and BASFI. As shown in S7 Table, we found no relationship

between the 13 SNPs and the susceptibility and severity of AS.

Genes on 2p15 for association with ankylosing spondylitis
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Discussion
Genetic factors play a critical role in the pathogenesis of AS. Previous GWAS and large-scale

case-control studies have demonstrated that, in addition to the major histocompatibility com-

plex (MHC) HLA-B27, multiple non-MHC susceptibility genes or area, such as ERAP1, IL23R

Table 1. The genotype and allele frequencies of identified SNPs in AS cases and healthy controls.

Gene SNP Genotype Case Control 2 P Allele Case Control OR (95%CI) 2 P

USP34 rs14170 A/A 268 309 5.346 0.069 A 810 861 1.202(1.015–1.423) 4.560 0.033

A/G 274 243 G 424 375

G/G 75 66

rs11428092 -/- 282 261 3.816 0.148 - 835 795 0.857(0.725–1.013) 3.285 0.070

-/A 271 273 A 397 441

A/A 63 84

rs10208769 A/A 279 310 3.026 0.220 A 823 861 1.147(0.968–1.358) 2.505 0.114

A/T 265 241 T 411 375

T/T 73 67

rs2123111 G/G 280 321 5.335 0.069 G 823 875 1.210(1.021–1.435) 4.829 0.028

G/A 263 233 A 411 361

A/A 74 64

FAM161A rs6545910 C/C 396 410 2.604 0.272 C 990 997 1.028(0.843–1.254) 0.075 0.784

C/T 198 177 T 244 239

T/T 23 31

rs6748320 G/G 246 266 1.175 0.556 G 779 806 1.085(0.920–1.280) 0.946 0.331

G/A 287 274 A 451 430

A/A 82 78

rs3736598 G/G 253 270 0.913 0.634 G 789 811 1.076(0.912–1.270) 0.761 0.383

G/A 283 271 A 445 425

A/A 81 77

AHSA2 rs777585 T/T 281 261 3.174 0.205 T 832 795 0.867(0.734–1.024) 2.834 0.092

T/C 270 273 C 400 441

C/C 65 84

B3GNT2 rs3811616 A/A 365 357 0.328 0.849 A 946 940 0.967(0.803–1.164) 0.127 0.722

A/G 216 226 G 288 296

G/G 36 35

C2orf74 rs1729674 T/T 266 303 4.490 0.106 T 803 853 1.195(1.011–1.414) 4.339 0.037

T/G 271 247 G 431 383

G/G 80 68

COMMD1 rs55785307 C/C 334 342 0.435 0.804 C 911 925 1.055(0.880–1.263) 0.332 0.564

C/G 243 241 G 323 311

G/G 40 35

KIAA1841 rs1177284 G/G 195 222 3.458 0.177 G 692 716 1.070(0.913–1.256) 0.701 0.403

G/A 302 272 A 538 520

A/A 118 124

__ rs10865331 G/G 178 216 10.084 0.006 G 628 710 1.303(1.111–1.526) 10.678 0.001a

G/A 272 278 A 606 526

A/A 167 124

SNP, Single nucleotide polymorphism
a P-value remained statistically significant after Bonferroni correction.

https://doi.org/10.1371/journal.pone.0177080.t001

Genes on 2p15 for association with ankylosing spondylitis

PLOSONE | https://doi.org/10.1371/journal.pone.0177080 May 11, 2017 6 / 12



and some susceptible gene desert area, might play a paramount role in disease susceptibility [8,

17–20].

Table 2. Association of thirteen SNPswith AS in a Chinese population.

Gene SNP Genotype Case Control MAF ORa(95%CI) Pa

Case Control

USP34 rs14170 A/A 268 309 0.344 0.303

A/G 274 243 1.300(1.025–1.649) 0.031

G/G 75 66 1.310(0.906–1.895) 0.151

rs11428092 -/- 282 261 0.322 0.357

-/A 271 273 0.919(0.724–1.165) 0.919

A/A 63 84 0.694(0.481–1.002) 0.052

rs10208769 A/A 279 310 0.333 0.303

A/T 265 241 1.222(0.963–1.550) 0.099

T/T 73 67 1.211(0.837–1.751) 0.310

rs2123111 G/G 280 321 0.333 0.292

G/A 263 233 1.294(1.020–1.642) 0.034

A/A 74 64 1.326(0.915–1.921) 0.136

FAM161A rs6545910 C/C 396 410 0.198 0.193

C/T 198 177 1.158(0.906–1.480) 0.241

T/T 23 31 0.768(0.440–1.340) 0.353

rs6748320 G/G 246 266 0.367 0.348

G/A 287 274 1.133(0.891–1.439) 0.309

A/A 82 78 1.137(0.797–1.622) 0.479

rs3736598 G/G 253 270 0.361 0.344

G/A 283 271 1.114(0.877–1.415) 0.374

A/A 81 77 1.123(0.786–1.603) 0.524

AHSA2 rs777585 T/T 281 261 0.325 0.357

T/C 270 273 0.919(0.724–1.166) 0.485

C/C 65 84 0.719(0.499–1.035) 0.076

B3GNT2 rs3811616 A/A 365 357 0.233 0.239

A/G 216 226 0.935(0.738–1.185) 0.577

G/G 36 35 1.006(0.618–1.638) 0.981

C2orf74 rs1729674 T/T 266 303 0.349 0.310

T/G 271 247 1.250(0.985–1.586) 0.067

G/G 80 68 1.340(0.932–1.926) 0.114

COMMD1 rs55785307 C/C 334 342 0.262 0.252

C/G 243 241 1.032(0.818–1.304) 0.789

G/G 40 35 1.170(0.726–1.887) 0.519

KIAA1841 rs1177284 G/G 195 222 0.437 0.421

G/A 302 272 1.264(0.982–1.627) 0.069

A/A 118 124 1.083(0.789–1.488) 0.621

__ rs10865331 G/G 178 216 0.491 0.426

G/A 272 278 1.187(0.916–1.539) 0.195

A/A 167 124 1.634(1.204–2.218) 0.002b

SNP, Single nucleotide polymorphism; MAF, minor allele frequency
a ORs and P values were obtained from logistic regression analysis
b P-value remained statistically signiciant after Bonferroni correction.

https://doi.org/10.1371/journal.pone.0177080.t002
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Our group has been studying genetic factors associated with AS susceptibility for several

years [21–23]. In the present study, we carried out a two-step study to investigate whether

2p15 area contributed to the development of AS. In the first discovery stage, we selected 17

major genes on chromosome 2p15 area as candidate genes, with 12 SNPs being identified to

be the potentially functional genetic variants for AS. Importantly, the 12 SNPs have not been

reported in the previous studies with several thousand patients and controls. In the second val-

idated stage, we for the first time examined the correlation between 13 SNPs (12 identified

SNPs and rs10865331) and the susceptibility to AS in a Chinese population. Among the 12

SNPs identified in the first stage, three (rs14170 and rs2123111 in USP34, rs1729674 in C2orf74)
were likely to be associated with AS susceptibility though the differences were no longer statisti-

cally significant after the Bonferroni correction. Moreover, stratification analysis by gender fur-

ther indicated that another two SNPs (rs11428092 and rs10208769 in USP34) might confer

susceptibilities to AS, providing further evidence of the association between USP34 and AS sus-
ceptibility. Furthermore, rs1729674, rs14170, rs2123111 and rs10208769 were in high LD and

included in haplotype analysis. We found a novel haplotype (TAGA) which might play a protec-

tive role in AS susceptibility. We also demonstrated a strong relationship between rs10865331

and AS susceptibility, which has been widely confirmed in different ethnic populations [9, 12,

13]. Notably, there was no LD between rs10865331 and rs1729674, rs14170, rs2123111. Thus,

we inferred that the possible association between the three SNPs (rs14170 and rs2123111 in

USP34, rs1729674 in C2orf74) and AS susceptibility was not affected by rs10865331.

2p15 region contains genes desert area and a large number of genes. The association

between 2p15 and AS susceptibility has been widely reported [8, 10]; however, the positive

locus rs10865331 is located in gene desert area, which refers to the intergenic regions on chro-

mosome approximately accounting for 25% of the genome. These segments are not responsi-

ble for any protein coding, and their functional significance remains elusive [24]. In this study,

we provided first evidence that rs14170 and rs2123111 in USP34, and rs1729674 in C2orf74
might be associated with AS susceptibility. In addition, evidence from stratification analysis

supported the conclusion that USP34might play a role in AS. Although the significance disap-

peared after Bonferroni correction, as a strict multiple correction methods, Bonferroni correc-

tion may obtain far conservative conclusion especially in the presence of a large number of

Table 3. Pairwise linkage disequilibrium (LD) results among SNPs rs1729674, rs14170, rs2123111 and rs10208769.

SNPs rs1729674 rs14170 rs2123111 rs10208769

rs1729674 0.968 0.982 0.944

rs14170 0.911 0.984 0.952

rs2123111 0.892 0.922 0.973

rs10208769 0.846 0.885 0.922

SNP, Single nucleotide polymorphism

D’ and r2 values are shown above and below the diagonal, respectively.

https://doi.org/10.1371/journal.pone.0177080.t003

Table 4. Haplotype frequencies in AS and controls.

Haplotypes Cases Controls 2 P value OR (95% CI)

TAGA 0.631 0.673 4.741 0.029 0.832(0.705–0.982)

GGAT 0.317 0.290 2.105 0.147 1.136(0.957–1.348)

OR, Odds ratio; CI, Confidence interval

The order of the polymorphisms is according to the positions on the chromosome: rs1729674, rs14170, rs2123111 and rs10208769.

https://doi.org/10.1371/journal.pone.0177080.t004
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SNPs [25]. Indeed, none of the identified SNPs survived from Bonferroni correction except

the rs10865331, with only suggestive evidence. It might be explained by the small sample size

given relatively small magnitude for the associations of these SNPs with AS. Although the evi-

dence was suggestive, the current study was valuable as it for the first time performed sequenc-

ing on 2p15 using NGS with all variants. Nonetheless, these associations should be further

verified in future studies with much larger samples.

Suspicious positive SNPs including rs14170 and rs2123111 were located in USP34 gene and
had a strong LD (D’ = 0.984, r2 = 0.922). USP34, as a protein coding gene, encodes a kind of

deubiquitinating enzyme, which belongs to ubiquitin-specific protease family. It has been

reported that somatic variations of USP34 are related to ovary tumor [26]. Moreover, USP34
positively regulates Wnt signaling pathway [27] and plays a role in DNA damage response

control [28]. However, biological explanations for the associations of USP34 variants with AS
have not yet been forthcoming. Poalas et al. reported that USP34 played a role in NF B signal

regulation in T lymphocytes [29]. Therefore, it is possible that USP34may indirectly partici-

pate in the pathophysiology of AS by adjusting NF B signal pathways, which have influences

on the pathogenesis of AS [30]. However, further studies are still needed to evaluate the func-

tion of USP34 in the process of AS.

Although it has been suggested that 2p15 plays an important role in AS, this is the first

study to provide evidence of an association between the gene polymorphisms besides 2p15

genes desert area and AS susceptibility in a Chinese population. Our previous study has veri-

fied the IL-12B Polymorphisms susceptibility with AS in mainland Han population [31]. How-

ever, the previous study just analyzed some SNPs of a certain gene and focused on IL-12B

gene, which is located in non-HLA region of chromosome 5q31–33. In contrast, the current

study mainly paid attention to the gene desert area of chromosome 2p15, and found two

potential susceptibility genes and corresponding genetic susceptibility loci, which would make

a big progress in the association study of AS. However, some limitations of the present study

should be mentioned. First, the sample size of the second validated stage was relatively small.

In addition, the recruited participants were all Han Chinese and the results might not repre-

sent other ethnic populations.

In summary, our two-stage genetic association study for the first time provides evidence

that the rs14170 and rs2123111 inUSP34 and rs1729674 in C2orf74may be associated with AS

susceptibility in a Han Chinese population. USP34 and C2orf74may be AS novel susceptibility

gene in 2p15 region. Further studies with larger sample size are required to confirm these asso-

ciations in other ethnics.
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