Pathogenicity and Infection Cycle of Vibrio owensii in Larviculture of the Ornate Spiny Lobster (Panulirus ornatus)

Evan F. Goulden, a,b Michael R. Hall, a David G. Bourne, a Lily L. Perez, b and Lone Høj a

Australian Institute of Marine Science, Townsville, Queensland, Australia, a and Research Centre for Molecular Biology, School of Science and Technology, University of New England, Armidale, New South Wales, Australia b

The type strain of Vibrio owensii (DY05) was isolated during an epizootic of aquaculture-reared larvae (phyllosomas) of the ornate spiny lobster (Panulirus ornatus). V. owensii DY05 was formally demonstrated to be the etiological agent of a disease causing rapid and reproducible larval mortality with pathologies similar to those seen during disease epizootics. Vectored challenge via the aquaculture live feed organism Artemia (brine shrimp) caused consistent cumulative mortality rates of 84 to 89% after 72 h, in contrast to variable mortality rates seen after immersion challenge. Histopathological examination of vector-challenged phyllosomas revealed bacterial proliferation in the midgut gland (hepatopancreas) concomitant with epithelial cell necrosis. A fluorescent-protein-labeled V. owensii DY05 transconjugant showed dispersal of single cells in the foregut and hepatopancreas 6 h postexposure, leading to colonization of the entire hepatopancreas within 18 h and eventually systemic infection. V. owensii DY05 is a marine enteropathogen highly virulent to P. ornatus phyllosoma that uses vector-mediated transmission and release from host association to a planktonic existence to perpetuate transfer. This understanding of the infection process will improve targeted biocontrol strategies and enhance the prospects of commercially viable larviculture for this valuable spiny lobster species.

Major steps toward the commercialization of closed life cycle aquaculture production of the ornate spiny lobster (Panulirus ornatus) have been reported recently (36), yet nutritional deficits (41) and mortality caused by bacterial disease (5) remain major constraints to hatchery productivity. Mass mortalities of larvae (phyllosomas) are often associated with enteric vibriosis, an infection of the midgut gland (hepatopancreas) caused by Vibrio species (6, 52).

Members of the genus Vibrio are natural marine inhabitants, playing important roles in nutrient cycling and forming associations with zooplankton (49). Microhabitat preferences and ecological selection may be key factors in the speciation of vibrios (20), and intensive aquaculture systems are thought to select for bacterial virulence, including traits that enhance infectivity and transmission (29, 33). Accordingly, many Vibrio species are pathogenic to cultured crustacean zooplankton larval forms, including the three closely related species Vibrio harveyi (32, 35), V. campbellii (17, 44), and the recently described V. owensii (8).

It is of paramount importance to the development of efficient disease management strategies that pathogens be identified by using experimental infection models that provide information on infection routes and infection dynamics (38). Recently, microorganisms engineered to express fluorescent proteins (FP) have significantly increased the understanding of invasive pathways and infection dynamics of pathogens, including V. anguillarum, Aeromonas hydrophila, and Edwardsiella tarda in fish models (10, 24, 30) and V. harveyi in abalone (50). Panulirus sp. phyllosoma (from Greek: leaf-like body) larvae are dorsoventrally flattened and transparent, which makes them excellent candidates for live, nondestructive direct microscopic observations of bacterium-host symbioses in situ.

This study describes the development of a robust experimental infection model to evaluate the pathogenicity of the V. owensii type strain (DY05) toward P. ornatus phyllosomas. The study included (i) comparison of immersion and vector challenges as natural routes of infection, (ii) verification of Koch’s postulates, (iii) pathological assessment of experimentally infected animals, and (iv) visualization of the spatiotemporal localization and infection process using FP-tagged strains.

MATERIALS AND METHODS

Larviculture. P. ornatus phyllosomas were sourced from broodstock held at the Tropical Aquaculture Facility of the Australian Institute of Marine Science (AIMS), Townsville, Australia. Maintenance of broodstock, production of phyllosomas, and larviculture were performed according to the methods of Smith et al. (41). Only apparently healthy individuals as assessed by positive phototaxis were used for experiments.

Isolation of the pathogen. Vibrio spp. were isolated from moribund stage 3 phyllosomas during an epizootic in the AIMS larval rearing system. Briefly, phyllosomas were washed in sterile artificial seawater (ASW) (Instant Ocean; Spectrum Brands, Madison, WI) to remove loosely attached epibionts and excess detritus, homogenized in ASW, and plated on thiosulfate citrate bile sucrose agar (TCBS) (BD; Franklin Lakes, NJ). The 3 numerically dominant and 3 unique morphotypes were cultured to purity on TCBS and cryopreserved (−80°C). In preliminary infection experiments (described below), one of the dominant isolates (DY05) caused 85% mortality of stage 3 phyllosomas 72 h after vectored challenge (data not shown). DY05 was subsequently characterized by exhaustive phenotypical, biochemical, and phylogenetic analyses and determined to belong to the novel species V. owensii, of which DY05 is the type strain (8).

Bacterial strains and culture conditions. Cryopreserved stocks of V. owensii DY05 were revived and cultured in 5 ml marine broth (MB) (BD;
28°C; 170 rpm) for 18 to 24 h. Transconjugations used the helper strain *Escherichia coli* CC118Apr harboring pEVST504 (45) and the green fluorescent protein (GFP) donor strain *E. coli* DH5αApr carrying the *V. fischeri* pES213-derived plasmid pSVST102 (13), both encoding kanamycin resistance. The helper and donor strains were revived and cultured in LB broth (5 g liter⁻¹ yeast extract, 10 g liter⁻¹ neutralized peptone; Oxoid, United Kingdom) supplemented with 40 μg ml⁻¹ kanamycin (30°C; 170 rpm).

Inoculum preparation. Bacterial cells were washed 3 times by centrifugation (10 min at 5,200 × g; 10°C) and resuspended in 0.22-μm-filtered seawater (FSW). The final suspension was adjusted to an optical density at 600 nm (OD₆₀₀) of 0.1 (Nonadop ND1000; Nonadop Products, Wilmington, DE). Corresponding total viable counts were determined by spiral plating (Eddy Jet; IUL, Spain) on marine agar (MA) (BD) and enumeration by an automatic colony counter (Flash and Grow v1.2; IUL).

Experimental infection by immersion. Phyllosomas (stage 1) were washed twice in FSW and distributed into 12-well cell culture plates (NUN150628; Nunc, Denmark) at 1 larva well⁻¹ with 3 ml FSW per well. The animals were acclimated in darkness (28°C; 45 rpm) for 2 h before adding *V. owensii* DY05 inoculum directly into the wells at a low (1 × 10³ CFU ml⁻¹), moderate (1 × 10⁵ CFU ml⁻¹), or high (1 × 10⁷ CFU ml⁻¹) doses. Experimental controls were not exposed to *V. owensii* DY05. Each treatment was performed in separate plates and run in quadruplicate (n = 48). Larval mortality was assessed every 24 h for 5 days, with phyllosomas not displaying any active movement after prolonged inspection being recorded as dead. No feeding or water changes were performed during the experiment. The immersion challenge experiment was repeated three times using progeny produced by different broodstocks and genetic lines.

Experimental infection by vectored challenge. Phyllosomas (stage 1 and stage 3) were exposed to *V. owensii* DY05 using live *Artemia* stage II (nauplii; INVE, Belgium) as vectors. Formalin-disinfected nauplii (200 nauplii ml⁻¹) were enriched through filter feeding with *V. owensii* DY05 (1 × 10⁶ CFU ml⁻¹) in tissue culture flasks (Sarstedt, Germany) for 2 h at 28°C; 45 rpm). Control nauplii were treated similarly, except no bacteria were added. Both control and enriched nauplii were homogenized and plated on TCBS.

Phyllosomas were distributed to cell culture plates and acclimated (28°C; 45 rpm) for 2 h (stage 1) or 24 h (stage 3) prior to experimental infection. On day 0, phyllosomas were fed with live enriched or nonenriched *Artemia* nauplii (control) at approximately 3 nauplii ml⁻¹. Each treatment was performed in separate plates and run in quadruplicate (n = 48). One stage 3 experiment included a control with phyllosomas treated with an antibiotic cocktail (25 mg liter⁻¹ erythromycin, 25 mg liter⁻¹ oxytetracycline, 10 mg liter⁻¹ streptomycin, 40 mg liter⁻¹ ciprofloxacin) for 24 h prior to collection and then rinsed, acclimated, and challenged with control nauplii as outlined above. This experiment also included additional replicate plates for sacrificial sampling for analysis of culturable vibrios (see below).

Larval mortality was assessed every 24 h for 5 days as described above. Water changes and additional feeds were not performed during the experiment. For each stage, three replicate experiments were performed using progeny from different broodstocks and genetic lineages.

Reisolation of Vibrio. Vibrios were recovered from *Artemia* cultures and experimentally infected phyllosomas (stage 3) in sacrificial plates. Briefly, six live and six dead (within 4 h postmortem) phyllosomas were sampled within the first 3 days, homogenized in ASW, and plated on TCBS. Dominant colony morphotypes were cultured to purity and cryopreserved.

For each isolate, colony PCR with universal bacterial 16S rRNA gene primers 27F and 1492R (22) was performed under standard amplification conditions. The PCR products were purified and sequenced in both directions by Macrogen (Seoul, South Korea). The sequences were edited using 4Peaks (Mekentos) and analyzed using the BLAST algorithm (http://www.ncbi.nlm.nih.gov/BLAST/) to determine nucleotide–nucleotide similarity with sequences in the nr/nt database. Isolates with high 16S rRNA gene sequence identity (≥99%) to *V. owensii* were analyzed further by sequencing topA (topoisomerase I; DNA replication and repair) and mrr8 (rod-shaping protein gene B subunit) using primers VtopA400F/VtopA1200R or VmreB12F/VmreB999R, respectively (39), as described by Thompson et al. (48). Sequences were generated and analyzed as described above.

Histopathological analysis. Phyllosomas (stage 3) were sampled to pair and 18, 24, and 42 h after vector challenge. Phyllosomas with limbs removed were fixed in Bouin’s fixative (75 ml saturated picric acid, 25 ml formaldehyde [40%], 5 ml glacial acetic acid) for 20 h at room temperature with gentle shaking. Fixed samples were washed and stored in 70% ethanol at 4°C until further processing. The samples were dehydrated in an ethanol series (70%, 96%, and 100%; 30 min), followed by preinfiltration and embedding in 2-hydroxyethyl-methacrylate resin (Technovit 7100; Heraeus Kulzer, Germany) according to the manufacturer’s protocol. The phyllosomas were sagittally sectioned (2 μm) using a carbide tungsten blade (Delaware Diamond Knives, Wilmington, DE) on a rotary microscope (HMX60; Microm International, Germany). Sections were progressively stained with Gill’s No. 2 hematoxylin and aqueous eosin (1%) (ProSciTech, Australia) and examined using light microscopy (AxioSkop 2 mot plus; Carl Zeiss, Germany). Images were captured using an AxioCam MRC5 camera (Carl Zeiss) and processed using AxiosVision release 4.8 software (Carl Zeiss). Special attention was given to the hepatopancreas tubules.

In situ visualization of the infection process. The GFP-carrying plasmid (pSVST102) was transferred to *V. owensii* DY05 cells by triparental conjugation (see File S1 in the supplemental material for detailed protocol). The transconjugant *V. owensii* DY05[GFP] was assessed for stable expression of GFP, and its growth profile was compared with that of the *V. owensii* DY05 wild type (see File S1 in the supplemental material for detailed protocol). Vectored challenge of phyllosomas (stage 1) with DY05[GFP] was performed as outlined above. Enriched *Artemia* nauplii and four vector-challenged phyllosomas were live mounted in FSW and viewed using differential interference contrast (DIC) and fluorescence microscopy (AxioSkop 2 mot plus; Carl Zeiss). Fluorescence was detected using a dual-band filter set (59004; Chroma Technology Corp., Bellows Falls, VT), and images were captured by an AxioCam MRC5 camera (Carl Zeiss) directed by the multidimensional acquisition module of the AxiosVision release 4.8 software (Carl Zeiss).

Statistical analysis. Differences between survival curves were determined using the product limit (Kaplan–Meier) estimator, employing log rank test, assuming two-tailed significance with sequences in the nr/nt database. Isolates with high 16S rRNA gene sequence identity (≥99%) to *V. owensii* were analyzed further by sequencing topA (topoisomerase I; DNA replication and repair) and mrr8 (rod-shaping protein gene B subunit) using primers VtopA400F/VtopA1200R or VmreB12F/VmreB999R, respectively (39), as described by Thompson et al. (48). Sequences were generated and analyzed as described above.

RESULTS

Pathogenicity of *V. owensii* DY05 toward *P. ornatus* phyllosomas. Immersion challenge experiments were performed with nonfeeding phyllosomas and low, moderate, or high concentrations of *V. owensii* DY05 (Fig. 1a). Significant interexperimental differences were seen for groups exposed to the same pathogen dose (ANOVA, P < 0.05), but not for control phyllosoma (ANOVA, P > 0.05), so data for the controls were pooled before further analyses. In two of the three replicate experiments, mortalities were significantly increased relative to the control for moderate (Dunnnett’s test, P < 0.05) and high (Dunnnett’s test, P < 0.0005) pathogen concentrations.

Vectored challenge (via *Artemia*) of stage 1 phyllosomas resulted in reproducible mortality rates, with no significant interex-
Experimental differences for challenged or control phyllosomas (ANOVA, $P < 0.05$); hence, data from the three experiments were pooled (Fig. 1b). Vector-mediated exposure to *V. owensii* DY05 had a significant (ANOVA, $P < 0.0001$) detrimental effect on phyllosoma survival. The highest number of phyllosoma deaths occurred within the first 24 h (49% of the total), and cumulative mortality after 72 h was 89% (Fig. 1b).

Vector challenge experiments of stage 3 phyllosomas showed significant interexperimental differences for control phyllosomas (ANOVA, $P < 0.0001$), but not for *V. owensii* DY05-challenged phyllosomas (ANOVA, $P > 0.05$), so the latter data were pooled (Fig. 1c). Vector-challenged phyllosomas showed decreased survival relative to each control group (Dunnett’s test, $P < 0.0001$). The highest number of phyllosoma deaths occurred between 24 and 48 h (56% of the total), and cumulative mortality after 72 h was 84% (Fig. 1c). A control group treated with antibiotics was included in one experiment to evaluate the contribution of opportunistic infections by autochthonous bacteria to stage 3 phyllosoma survival. Antibiotic treatment increased survival significantly relative to the corresponding control (Dunnett’s test, $P < 0.0001$).

Confirmation of Koch’s postulates and identification of phyllosoma-associated vibrios. Isolates recovered from enriched *Artemia* and vector-challenged stage 3 phyllosomas are listed in Table S1 in the supplemental material. No vibrios were recovered on TCBS from control *Artemia* cultures. In contrast, a strain showing 16S rRNA, *mreB*, and *topA* gene sequence identity to *V. owensii* DY05 was recovered from enriched *Artemia* nauplii. For five out of six dead vector-challenged phyllosomas, the dominant bacterial morphotypes were identical to *V. owensii* DY05 as determined by sequencing of the 16S rRNA, *mreB*, and *topA* genes, thereby satisfying Koch’s postulates. It should be noted that for the sixth vector-challenged individual, a *V. neptunis*-like strain (A37) was the dominant member of the culturable community. Importantly, *V. owensii* DY05 was not recovered from apparently healthy live phyllosoma or dead control individuals, for which recovered strains were affiliated with *V. neptunis*, *V. parahaemolyticus*, and *V. harveyi*.

FIG 1 Survival of *P. ornatus* phyllosomas experimentally infected with *V. owensii* DY05 by immersion (a) or vectored challenge via *Artemia* nauplii (b to d). (a) Stage 1 phyllosoma survival after immersion with *V. owensii* DY05 at concentrations of 0 (control; ○), 1×10^3 (●), 1×10^5 (▲), and 1×10^7 (●) CFU ml$^{-1}$. Data from one of three independent experiments are presented, as high interexperimental variability prevented pooling of data. (b) Stage 1 phyllosoma survival after vectored challenge with nonenriched nauplii (control; ○) or nauplii enriched with *V. owensii* DY05 (●). Pooled data from three independent experiments are presented. (c) Stage 3 phyllosoma survival after vectored challenge with nonenriched nauplii (controls; ○, ●, and ▲) or nauplii enriched in *V. owensii* DY05 (●). Data from three independent experiments are shown; data for controls were not pooled due to high interexperimental variability, while data for *V. owensii*-challenged phyllosomas were pooled. The first experiment (control; ○) included a second control treated with an antibiotic cocktail (●) prior to feeding with nauplii. (d) Stage 1 phyllosoma survival after vectored challenge with nonenriched nauplii (controls; ○) or nauplii enriched with *V. owensii* DY05 (●) or DY05[GFP] (▲). The asterisks indicate data points significantly different (Student’s t test) from the corresponding control. Means ± standard deviations (SD) are shown.
Histology. Prior to experimental infection with *V. owensii* DY05, stage 3 phyllosomas showed structural integrity of lateral hepatopancreas tubules, characterized by a dilated lumen lined by cuboidal epithelial cells anchored to an intact basement membrane (Fig. 2a). Eighteen hours after infection, most tubule sections showed pathologies similar to those of control phyllosomas; however, some exhibited dissociation of intercellular junctions. Proliferation of rod-shaped bacteria in the tubule lumen was observed 24 h postexposure, concomitant with epithelial cell rounding (Fig. 2b) and, in some specimens, detachment of epithelial cells from the basement membrane. After 42 h, the hepatopancreas tubules of dead phyllosomas were necrotic (Fig. 2c) and in some instances had completely disintegrated, with the tissue remnants and intertubular spaces inhabited by masses of bacterial cells. Examination of eyes and thoracic musculature also indicated bacterial infiltration, suggesting progression to systemic infection in the late stages of moribundity or postmortem.

In situ visualization of the *V. owensii* DY05 infection process. The transconjugant DY05[GFP] stably expressed GFP after continuous subculture (see Fig. 5a in the supplemental material) and showed a growth profile similar to that of the wild type (see Fig. S1b in the supplemental material). The survival curves of stage 1 phyllosomas after vectored challenge with DY05[GFP] (Fig. 1d) did not differ significantly from those of the wild type (ANOVA, \(P > 0.05 \)). These observations strongly indicate that FP expression had a low bioenergetic cost and no detrimental effect on virulence, making DY05[GFP] a suitable biomarker to visualize the infection process of *V. owensii* DY05. The spatiotemporal dynamics of DY05[GFP] through the infection cycle were monitored during vectored challenge of stage 1 phyllosomas. Following a 2-h enrichment of the vector organism, *Artemia*, fluorescent cells were detected along the length of the gastrointestinal tract, with colonization typically more concentrated toward the gut posterior (Fig. 3a). The degree of colonization varied between *Artemia* individuals, suggesting bioaccumulation was not uniform. Small numbers of fluorescent cells were observed on appendages, indicating incidental entanglement.

After vectored challenge, the in situ localization of DY05[GFP] in stage 1 phyllosomas was monitored at 6-h intervals for 24 h. After 6 h, monodispersed and small aggregates of fluorescent cells were visualized within the foregut and in the hepatopancreas, and cells were seen transiting through the midgut (Fig. 3b). At this stage, phyllosomas were still active, hemocytes were circulating, and the structural integrity of tissues and organs was retained. After 12 h, mass proliferation of fluorescent bacteria was visualized in the distal ends of the hepatopancreas lobes (Fig. 3c). Most bacteria in the lobes appeared to be pulsating, indicating motility. During this phase, many bacteria were actively expelled from the hepatopancreas through the pyloric valve into the midgut, and through a series of rhythmic convulsions, bacteria were pushed through the hindgut and evacuated from the anus (Fig. 3d). After 18 h, the entire hepatopancreas was illuminated by fluorescent cells, and this was associated with tissue granulation, loss of architecture, and detachment of the hepatopancreas gland from the cuticle epithelia (Fig. 3e). At this stage, phyllosomas showed symptoms of lethargy, and hepatopancreas opaqueness could be discerned macroscopically. After 24 h, when >63% of the population had died (Fig. 1d), the entire dead phyllosoma was fluorescent, suggestive of systemic infection (Fig. 3f). The vast majority of fluorescent cells were still motile while inhabiting internal tissues, which appeared to lose structural integrity, with the exception of the posterior hindgut. Bacteria transited through the vascular systems of the limbs, antennae, antennules, and eyes, indicating translocation pathways.

In general, external colonization was minimal during the infection process. Individual fluorescent cells, rather than clusters, were observed infrequently on the cephalic shield, thorax, and limbs. However, incidental entanglement of fluorescent cells in the plumose natatory setae (feathery appendages of the limbs used for propulsion) was noted and seemed to increase over time in some individuals. Interestingly, in one individual, a severed leg (pereiopod) had extensive colonization of cells around the lesion, which could indicate an alternative route of infection.

DISCUSSION

The present study provides the first description of the pathogenicity, pathology, and infection dynamics of the *V. owensii* type strain (DY05) toward phyllosomas of the ornate spiny lobster, *P. ornatus*. Infection of early-stage phyllosomas appears to be a multifaceted process, involving (i) vector-facilitated transmission, (ii) targeted colonization and proliferation in the hepatopancreas, (iii) evacuation of cells into the ambient environment, and (iv) systemic infection and acute mortality. In addition, occasional cannibalism of moribund and dead phyllosomas by vigorous individuals (our personal observation) may serve as an additional infection route. A conceptualized model to describe and summa-
The causative effect of *V. owensii* DY05 infection on phyllosoma mortality was demonstrated by reisolating the agent from moribund experimentally infected phyllosomas, thereby fulfilling Koch’s postulates. Identification of the reisolated strains was performed by sequencing multiple loci (16S rRNA, *topA*, and *mreB* genes) in order to enable discrimination between *V. harveyi*-like species at the strain level, which cannot reliably be achieved by sequencing the 16S rRNA gene alone (8, 9).

Members of the genus *Vibrio* form major constituents of the microbiota of healthy and diseased cultured *P. ornatus* phyllosomas.
We isolated strains affiliated with *V. neptunis*, *V. harveyi*, and *V. parahaemolyticus* from both apparently healthy stage 3 phyllosomas and dead control individuals. These species include strains pathogenic to cultured aquatic invertebrates and fish (3, 4, 7, 25, 35, 46), and it is possible they, together with other autochthonous microbiota, contributed to the interexperimental variability for control stage 3 phyllosomas (Fig. 1c). This is supported by the enhanced survival of the control group exposed to antibiotic treatment (Fig. 1c). Another factor likely contributing to the differences in survival between stage 3 control cohorts is larval batch variability arising from underlying differences in genotype and physiological condition. For one of six experimentally infected individuals, a *V. neptunis* strain was dominant in the cultured community, introducing the possibility of synergistic interaction between *V. owensii* and other vibrios and the involvement of multiple etiological agents in disease epizootics (15). Despite the use of xenic hosts in our infection model, the consistent and reproducible mortality patterns of vector-challenged phyllosomas and the visualization of mass hepatopancreatic colonization by a GFP-tagged transconjugant in moribund individuals suggest a singular effect imposed by *V. owensii* DY05.

Clear pathological changes were visualized in experimentally infected phyllosomas, including bacterial proliferation in the hepatopancreas tubule lumen, rounding of epithelial cells, dissociation of intercellular junctions, detachment and necrosis of epithelial cells from the basement membrane, and, eventually, complete disintegration of tubules associated with systemic infection. Similar pathologies have been reported previously in cultured *P. ornatus* phyllosomas during disease epizootics (5, 6), reinforcing the epizootiological relevance of our experiments. Detachment and rounding of epithelial cells were also reported by Martin et al. (28) in the gut of ridgeback rock shrimp (*Sicyonia ingentis*) exposed to *V. harveyi* and *V. parahaemolyticus*. Comparable pathologies concomitant with *Vibrio* infections have also been described in cultured phyllosomas of packhorse rock lobster [*Sagmariasus (Jasus) verreauxi*] (12),...
southern rock lobster (*Jasus edwardsii*) (18), and various life
stages of penaeid shrimp (23, 42).

Mortality was more rapid within the first 24 h in stage 1 than in
stage 3 phyllosomas, suggesting that newly hatched phyllosomas
are more susceptible to invasion by *V. owensii* DY05. Increased
sensitivity to pathogens in early developmental stages of crusta-
ceans has been reported previously (2, 32). Factors that could
contribute to delayed onset of disease in more developed phyllo-
somas include differential expression of immune-related genes
(21), a more complex hepatopancreas structure (40), and poten-
tial antagonistic activity from resident gut microbiota (14).

A key determinant of a reliable infection model is the delivery
of putative pathogens to the host using natural infection routes
(38), which can significantly influence the onset and pathology of
disease (26, 27). In this study, vectored challenge via the aquacul-
ture live feed organism *Artemia* was tested as a possible infection
route, as it is a demonstrated carrier of *Vibrio* spp. in our system
(19). Vectored challenge with *V. owensii* DY05 via *Artemia*
consistently caused 84 to 89% cumulative mortality in stage 1 and 3
phyllosomas within 72 h after exposure. Mass mortalities of com-
parable magnitude and across similar temporal scales have been
reported previously in larval rearing runs of *P. ornat us*, usually
coinciding with molting (5). In contrast, mortality patterns after
immersion challenge were more erratic and variable between ex-
periments, suggestive of a less reliable model. *Artemia* organisms
have long been recognized as important disease vectors in marine
larviculture (19). They ingest and bioaccumulate bacterioplank-
ton at 10^2 to 10^4 CFU nauplius^-1 (43), thereby increasing the
chance of delivery into the phyllosoma digestive tract. Further-
more, association with ingested *Artemia* may protect the pathogen
from a potentially unfavorable gastrointestinal microenvironment,
as previously suggested for *V. anguillarum* in turbot (*Scoph-
thalimus maximus*) larvae (16). The results from the present study
underscore the importance of *Artemia* in the infection process of
V. owensii DY05 in the larviculture ecosystem (Fig. 4).

Incidental ingestion of *V. owensii* DY05 by nonfeeding phyllo-
somas likely occurred during the immersion challenge at moder-
ate and high concentrations (≥10^3 CFU ml^-1), when mortal-
ity was significantly increased relative to controls. Entry through
breakages in the cuticle is another possible infection route, given
that colonization of a severed pereiopod was observed with FP-
tagged *V. owensii* DY05. However, external colonization was gen-
ergally lacking, suggesting that the cuticle is not a preferred mi-
roenvironment for *V. owensii* DY05 and that unaided invasion
through the cuticle is a less likely portal of entry. Diggles et al. (12)
demonstrated that experimentally injured *S. verreauxi* phylloso-
mas were more susceptible to *V. jasicida* (formerly *V. harveyi*) in
similarity immersion experiments and suggested that inadvertent
injuries acquired during experimental processing could have con-
tributed to some inconsistent mortality patterns (12).

Bacterial proliferation in the hepatopancreas has been re-
ported for pathogenic vibrios in spiny lobster phyllosomas (6, 12,
18, 52), penaeid shrimp (1, 23, 35), and molluscs (54). In the
present study, proliferation of the pathogen occurred in the distal
ends of the hepatopancreas 12 h after exposure. The distal region
harbors a high proportion of digestive cells (40), which could in-
dicate a potential nutrient source for bacterial proliferation. Evac-
uation of pathogen cells from the phyllosoma hepatopancreas (12
h after exposure) and reversion to planktonic forms may reflect a
behavioral mechanism evolved to enhance the prospects of colo-
nizing other hosts (47). Reversion to a planktonic existence may
be facilitated by quorum sensing, whereby cell density-dependent
downregulation of virulence factors constitutes a switch from ep-
ithelium-attached forms to free-living lifestyles (11, 56). Shedding
of large numbers of planktonic forms into the aquaculture envi-
ronment increases the probability of uptake by *Artemia*, thus pos-
sibly perpetuating vector-mediated transmission through a feed-
back loop (Fig. 4). This phase of the infection process may
represent the survival strategy of a pathogen exquisitely adapted to
an ecosystem where the availability of hosts is high (29, 33).

Progression from hepatopancreas colonization to systemic in-
fection was likely facilitated by the observed epithelial cell detach-
ment and necrosis. Destruction of gut epithelial cells could allow
bacteria unrestricted access to the basal lamina, ultimately leading
to translocation to other tissues and organs (34). *V. proteolyticus* is
known to interfere with gut epithelial cell junctions of *Artemia*,
allowing penetration through the intercellular spaces and eventual
invasion of the body cavity (51). While the mechanism by which *V.
owensii* DY05 caused cell detachment and necrosis is unknown, it
can be hypothesized that it was related to production of toxins. Prelimi-
nary studies have demonstrated that *V. owensii* DY05 produces he-
molysins, proteases, and phospholipases (data not shown), previ-
ously identified as virulence factors in Harveyi clade vibrios (4, 25, 43,
46, 55). It is likely that the pathogenicity of *V. owensii* DY05 is a
multifactorial process, given that some virulence genes, including
those encoding hemolysins and proteases, may be linked or con-
trolled by the same regulatory mechanism (37). *V. owensii* DY05 represents a specialist marine enteropathogen
posing a serious threat to the development of viable hatchery tech-
nologies for *P. ornat us*. The present study provides a conceptual-
ized snapshot of the adaptive strategy used by the pathogen to
enhance infectivity in the larviculture ecosystem, including vec-
tor-mediated transmission and release from host association to a
planktonic existence to perpetuate transfer. Importantly, identifi-
cation of the bacterium’s host-associated ecological niches will
facilitate the development of targeted biocontrol strategies for *P.
ornatus* larviculture. As new pathogens emerge in larviculture set-
tings, researchers are encouraged to take advantage of transparent
zooplanktonic forms to elucidate bacterial-host symbioses *in situ*.
It is anticipated that the robust infection model described here will
be used as an important diagnostic tool to identify pathogens in
Panulirus and *Jasus* sp. hatcheries.

ACKNOWLEDGMENTS

We thank Eric Stabb (University of Georgia) for kindly donating the
helper and donor strains used to construct the fluorescent-protein-ex-
pressing transconjugants of *V. owensii*. We also acknowledge the zootec-
chical assistance of Greg Smith, Matt Kenway, Matt Salmon, Grant Milton,
Justin Hochen, Katie Holroyd, Jane Gioffre, and Michael Clarkson and
technical assistance of Greg Smith, Matt Kenway, Matt Salmon, Grant Milton,
and Tim Simmonds for help with statistical analyses, and Tim Simmonds for
help with preparation of figures (all AIMS).

E.F.G. was supported by an Australian Postgraduate Award Ph.D.
scholarship.

REFERENCES

Vibrio parahaemolyticus in American white shrimp, *Litopenaeus van-

