Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle?

Andrea Giuliani1, David Phillips1, Jon D. Woodhead1, Vadim S. Kamenetsky2, Marco L. Fiorentini3, Roland Maas1, Ashton Soltys1 & Richard A. Armstrong4

Kimberlites and orangeites (previously named Group-II kimberlites) are small-volume igneous rocks occurring in diatremes, sills and dykes. They are the main hosts for diamonds and are of scientific importance because they contain fragments of entrained mantle and crustal rocks, thus providing key information about the subcontinental lithosphere. Orangeites are ultrapotassic, H2O and CO2-rich rocks hosting minerals such as phlogopite, olivine, calcite and apatite. The major, trace element and isotopic compositions of orangeites resemble those of intensely metasomatized mantle of the type represented by MARID (mica-amphibole-rutile-ilmenite-diopside) xenoliths. Here we report new data for two MARID xenoliths from the Bultfontein kimberlite (Kimberley, South Africa) and we show that MARID-veined mantle has mineralogical (carbonate-apatite) and geochemical (Sr-Nd-Hf-O isotopes) characteristics compatible with orangeite melt generation from a MARID-rich source. This interpretation is supported by U-Pb zircon ages in MARID xenoliths from the Kimberley kimberlites, which confirm MARID rock formation before orangeite magmatism in the area.
orangeites (previously known as Group-II kimberlites) are H2O- and CO2-rich peralkaline ultrapotassic igneous rocks. Initially considered to be a variety of archetypal (or Group-I) kimberlite, orangeites are now recognized as a distinct magma type, based on their unique mineralogy, mineral chemistry, bulk-rock major and trace element concentrations and isotopic composition. Orangeites are widespread in southern Africa with more than 200 known occurrences recognized, but similar rocks have also been identified in Australia, India, Russia and Finland. In this regard, Mitchell proposed that orangeites from the Kaapvaal craton (southern Africa) may be local variants of global lamproite-like ultrapotassic magmatism, with all these melts derived from metasomatized lherzospheric mantle.

Like kimberlites, orangeites occur as small pipes (<2 km in diameter), sills and dykes and are hybrid rocks consisting of mantle-derived xenoliths (that is, rocks fragments) and xenocrysts (including diamonds) set in a matrix of magmatic origin. The magmatic mineralogy is dominated by phlogopite with subordinate olivine (partly xenocrystic), carbonates, apatite and clinopyroxene (not always present), and lesser spinel, perovskite and exotic phases such as REE-phosphates, K-Ba titanates and K-rich in more evolved varieties. Orangeites are extremely enriched in mantle incompatible elements, particularly LILE (K, Rb, Ba, Sr), Th, U, Pb and LREE, which indicates derivation from partial melting of a metasomatized mantle source. However, their high Mg# (equilibrium) and compatible element content (for example, Ni, Cr) suggests equilibration with refractory peridotitic mantle that experienced extensive partial melting early in its history. Therefore, orangeite melts appear to have originated from a refractory mantle that experienced subsequent metasomatism by H2O/CO2-rich fluids/melts enriched in incompatible elements. A number of upper mantle xenolith types entrained by kimberlites and orangeites magmas exhibit these characteristics (see, for example, refs 11–13), which supports the widely held hypothesis that orangeite melts are sourced from the metasomatized mantle lithosphere. This interpretation is also consistent with Sr-Nd isotopic data, which indicate a long history of lherzospheric mantle enrichment for the orangeite source (that is, radiogenic Sr and radiogenic Nd isotopes). Note that this hypothesis contrasts with an asthenospheric (that is, sub-lherzospheric) origin for kimberlites favoured by many authors (see, for example, refs 3,16).

Despite a general consensus on the location of the orangeite source in the lherzospheric mantle, considerable uncertainty remains regarding the exact composition of this source. Compositions proposed include phlogopite-carbonate harzburgite, phlogopite-diopside garnet-bearing peridotite and peridotite with veins of phlogopite, K-rich, apatite, carbonates and diopside. It is noteworthy that the orangeite peridotite composition proposed by Mitchell is very similar to that of the MARID (mica-amphibole-rutile-ilmenite-diopside) suite of mantle xenoliths; the only notable differences are the presence of Ti-phases and apparent absence of carbonates in MARID rocks.

MARID rocks have been transported from the lherzospheric mantle to the Earth’s surface by kimberlite, orangeite and lamprophyre magmas from various localities worldwide. MARID rocks represent an extreme example of mantle metasomatism because of their exceptional enrichment in alkalis, LREE, HFSE (for example, Ti, Zr, Nb) and volatile species, primarily H2O (ref. 19). For this reason, MARID rocks have been frequently invoked to account for the origin of alkali-rich mafic-ultramafic magmas, with the notable exception of orangeites. Sweeney et al. noted that the bulk major element composition of MARID rocks could be obtained by subtracting the composition of olivine and carbonates from a bulk orangeite composition. In addition, the Sr and Nd isotopic composition of several MARID rocks overlap with the field defined by orangeites. It is therefore possible that a MARID-veined peridotitic mantle could represent the source of orangeite melts.

To test this hypothesis, we have examined the composition of primary mineral inclusions in MARID phases and determined the mineral major and trace element concentrations, clinopyroxene Sr-Nd-Hf isotopic composition and xenolith U-Pb-Hf-O isotopic composition for two MARID samples from the Bultfontein kimberlite (Kimberley, South Africa; Fig. 1). The Kimberley area is unique because it hosts kimberlites (~81–95 Myr ago) that were emplaced after the orangeites of the Barkly West-Boshof district (115–128 Myr ago) that host a variety of metasomatized mantle xenoliths, which have been extensively studied. Thus, mantle xenoliths entrained by the Bultfontein kimberlite can be considered representative of the same mantle lithosphere that produced the Barkly West-Boshof orangeites. Our study reveals that MARID minerals contain carbonate-rich primary inclusions and have Hf.

Figure 1 | Schematic map of southern Africa showing the location of the Kimberley area (modified from Giuliani et al.). The estimated boundaries of the Kaapvaal craton, the position of major kimberlite and orangeite intrusions around Kimberley and of major outcrops of Karoo igneous rocks are also shown. Scale bar, 500 km.
isotopic compositions similar to southern African orangeites. Some MARID zircons show U-Pb ages that predate the emplacement of orangeites and δ^{18}O values above the mantle range. Our results, combined with existing data, confirm that a MARID-veined peridotitic mantle represents a suitable source for orangeite melts.

Results

Sample descriptions. MARID xenolith samples XM1/331 and BLFX-3 were collected from the Bultfontein Dumps, which contain waste material predominantly from mining of the Bultfontein kimberlite. The Bultfontein kimberlite is part of the Kimberley cluster of kimberlites (Fig. 1), which have been classified as archetypal kimberlites based on their mineralogy and Sr-Nd isotopic signature. The Kimberley kimberlites were emplaced between ~81 and 90 Myr ago, based on Rb-Sr phlogopite and U-Pb perovskite geochronology (Fig. 2).

MARID xenoliths are relatively common in the Kimberley kimberlites. The two samples studied here exhibit coarse-grained foliated textures, with compositional banding related to the preferential concentrations of K-richterite and phlogopite in discrete layers. Inclusions of Ni-Fe sulphides also occur in ilmenite from sample BLFX-3. Rare primary carbonate-rich inclusions were also documented in the cores of ilmenite grains from sample XM1/331, whereas phlogopite contains occasional inclusions of K-richterite and the dominant oxide phase (that is, rutile or ilmenite). However, neither K-richterite nor phlogopite is ideal for studying their primary inclusion mineralogy, particularly with respect to minerals (for example, carbonates) readily modified by late-stage fluids, because of their strong cleavage. Conversely, clinopyroxene and ilmenite appear to be more resistant to reaction with late-stage mantle and/or crustal fluids and preserve their original primary inclusion assemblages.

Clinopyroxene from sample XM1/331 hosts abundant small (<10 μm), primary carbonate-rich inclusions with irregular to amoeboid shapes (Fig. 5a and Supplementary Figs 1 and 2). The inclusions are distributed heterogeneously and are enriched in alkali carbonates (that is, shortite Na_2Ca_2(CO_3)_3, zemkorite (Na,K)_2Ca(CO_3)_2 and Na-K-rich calcite), Na-rich fluorapatite, abundant phlogopite (and tetraferriphlogopite), K-richterite and Fe-Ti oxides, but also host minor strontian barite. Similar inclusions occur in mantle polymict breccia xenoliths, although the latter are more enriched in carbonates over silicate phases. Rare primary carbonate-rich inclusions were also documented in the cores of ilmenite grains from sample BLFX-3. These inclusions are elongated and are up to 15 μm in size. They are composed of dolomite with variable Na_2O and K_2O concentrations and, in one instance, zemkorite (Fig. 5b and Supplementary Figs 1 and 2). Inclusions of Ni-Fe sulphides also occur in ilmenite from sample BLFX-3.

Major and trace element composition of MARID minerals. The major oxide compositions of K-richterite, clinopyroxene, phlogopite, ilmenite and rutile in the two MARID xenoliths are reported in Supplementary Table 1, with trace element compositions listed in Supplementary Tables 2 and 3. Supplementary
Figure 3 | Photographs of off-cuts and thin-section scans of MARID samples. Samples XM1/331 (a,b) and BLFX-2 (c,d) show foliated texture due to preferential concentration of K-richterite (kric) and phlogopite (phl) in discrete layers. Note that clinopyroxene (cpx) only occurs in sample XM1/331. Coin diameter, 2.4 cm. Scale bars in b,c,d are 0.5, 2 and 1 cm, respectively.

Figure 4 | Images of zircon grains in MARID sample XM1/331. Optical photomicrograph of cluster of zircon (zrc) grains interstitial to K-richterite (kric) (a; scale bar, 0.5 mm) and back-scattered electron (BSE) SEM images of zircon grains included in K-richterite (b,d) and rutile (rt) (c). In d, note the K-richterite inclusion in zircon, which is rimmed by zirconolite (zrcl).
Fig. 3 and 4 show that these compositions are broadly in the range of minerals from previously studied MARID rocks.\(^{12,18,19,41}\)

Zircon trace elements and U-Pb-Hf-O isotopic compositions. Zircons from sample XM1/331 are variable in size (up to \(0.5\) mm), with rounded to irregular shapes (Figs 4 and 6), which are typical of zircons formed in mantle rocks. Scanning electron microscope (SEM) cathodoluminescence (CL) imaging reveals that these zircons have complex textures, with darker CL areas partially enclosed and traversed by domains with brighter CL response (Fig. 6 and Supplementary Fig. 5; see also refs \(^{39,40,42}\)). Bright CL domains have low trace element contents (\(\text{SREE} = 43\) p.p.m.; \(\text{Y} = 52\) p.p.m.; \(\text{U} = 36\) p.p.m.) and the highest \(\text{Yb/Sm}\) ratios (Supplementary Fig. 6). Such compositions are typical of zircon megacrysts in kimberlites.\(^{43}\) Dark CL domains have higher trace element contents (\(\text{SREE} = 68–414\) p.p.m.; \(\text{Y} = 78–501\) p.p.m.; \(\text{U} = 44–155\) p.p.m.; Supplementary Table 4), similar to compositions of zircons in lamproites and carbonatites.\(^{43}\) (Supplementary Fig. 7).

In situ SHRIMP U-Pb dating of zircons from xenolith XM1/331 produced variable \(^{206}\text{Pb}/^{238}\text{U}\) ages ranging from \(86.6 \pm 1.4\) to \(129.8 \pm 2.0\) (2 s.d.) Myr ago (Fig. 2 and Supplementary Table 6; see Methods for analytical details). There is no correlation between grain size and U-Pb age indicating that the age variation is not due to diffusive loss of radiogenic Pb. The \(^{206}\text{Pb}/^{238}\text{U}\) versus \(^{238}\text{U}/^{206}\text{Pb}\) Concordia diagram shows that the majority of analyses (18/23) plot along a regression line corresponding to a lower intercept age of \(89.6 \pm 1.2\) Myr ago (2 s.d.; mean square weighted deviation (MSWD) = 1.09—Supplementary Fig. 8). The weighted \(^{206}\text{Pb}/^{238}\text{U}\) age for these analyses is \(90.1 \pm 0.6\) Myr ago (\(n = 16/18\); MSWD = 2.0). The remaining five analyses correspond to some of the dark CL areas (see, for example, Fig. 6) and yielded ages between \(98.1 \pm 2.1\) and \(129.8 \pm 2.0\) Myr ago (Supplementary Figs 5 and 6). This age range is comparable to the previous U-Pb ages for zircons from MARID xenoliths (80–142 Myr ago\(^{32,39,42,44}\)) and PKP (phlogopite + K-richterite peridotite) rocks (82–101 Myr ago\(^{32,33,45}\)) from the Kimberley area (Fig. 2).

Oxygen isotope ratios in zircons from xenolith XM1/331 (\(\delta^{18}\text{O} = 5.3–6.6\)‰; Fig. 7 and Supplementary Table 7), which was measured by ion microprobe (see Methods), show greater variation than is accountable from analytical uncertainty alone.

Figure 5 | Back-scattered electron SEM images of primary carbonate-rich inclusions in MARID minerals. (a) Inclusion of shortite (\(\text{Na}_2\text{Ca}_2\text{(CO}_3\text{)}_3\)), tetraferriphlogopite and Na-rich fluoroapatite in clinopyroxene grain of sample XM1/331; (b) inclusion of alkali-bearing dolomite in ilmenite grain of sample BLFX-3 (scale bar, 5 \(\mu\)m). Additional SEM images are in Supplementary Figs 1 and 2.

Figure 6 | CL SEM image of zircon grain in MARID sample XM1/331. Also shown are the areas analysed for trace elements, O, U-Pb and Hf isotopes together with Ti concentrations (p.p.m.), \(\delta^{18}\text{O}\) (‰) values and U-Pb ages (Myr ago).

Figure 7 | Oxygen isotopic composition of zircon grains in MARID sample XM1/331. The compositions are reported as ‰\(\delta^{18}\text{O}\) relative to SMOW. Error bars are 2 s.d. MARID zircons refer to the grains recently analysed by Konzett et al.\(^{40}\) in another xenolith from the Bultfontein kimberlite. Mantle zircons \(\delta^{18}\text{O} = 5.3 \pm 0.6\)‰ (ref. 46) (2 s.d.).
(± 0.3‰, 2 s.d.). This is supported by the high MSWD (8.9) of the weighted average of these results (5.94 ± 0.17‰, n = 18; 2 s.e.). Figure 7 shows that at least seven analyses plot above the field of mantle zircons (δ¹⁸O = 5.3 ± 0.6‰ (ref. 46). It is notable that the δ¹⁸O values of the XM1/331 zircons are not correlated with the CL response, U-Pb age or trace element concentration of analysed areas (Supplementary Figs 5, 6 and 9). Konzett et al.40 recently reported a very similar range of δ¹⁸O values (5.6–6.7‰; Fig. 7) for zircon grains in another MARID xenolith from Bultfontein.

Clinopyroxene Sr-Nd-Hf isotopes. Solution ICP–MS isotopic analyses of clinopyroxene grains from xenolith XM1/331 yielded the following present-day ⁸⁷Sr/⁸⁶Sr, ¹⁴³Nd/¹⁴⁴Nd and ¹⁷⁶Hf/¹⁷⁷Hf (± 2 s.e.) ratios: 0.708135 ± 0.000018, 0.512117 ± 0.000008, 0.282359 ± 0.000009 (Table 1; see Methods for analytical details). Correction for radiogenic ingrowth since emplacement of the Bultfontein kimberlite at ~84 Myr ago38 yields ⁸⁷Sr/⁸⁶Sr = 0.708105 ± 0.000018, εNd = −9.1 ± 0.3 and εHf = −13.7 ± 0.5. The εHf value is identical to that of zircon from the same sample, and is equivalent to an offset from the global Hf-Nd isotope array48 of ΔεHf = −3.3 (Fig. 8). These values are also similar to εHf values (−16.7 to −17.8) reported for zircon grains in another MARID xenolith from the Bultfontein kimberlite by Choukroun et al.44 The clinopyroxene Sr-Nd isotopic composition is within the ‘enriched’ field of MARID minerals (Fig. 8a).

Discussion

Although MARID rocks have never been invoked as the mantle source for orangeite magmas, links between MARID rocks and orangeites have long been recognized and include: MARID xenoliths and related xenocrysts have been recovered from orangeite intrusions, including Star, Swartruggens and those in the Barkly West-Boshof district13,18,19 (South Africa; Fig. 1); MARID and orangeite rocks have similar bulk major element compositions once olivine and carbonate components have been subtracted from orangeite compositions27; calculated REE patterns of melts in equilibrium with MARID diopside resemble those of orangeite rocks12; zircon U-Pb ages of some MARID xenoliths from the Kimberley area39,42 overlap the timing of nearby Barkly West-Boshof orangeite magmatism (Fig. 2); the Sr-Nd isotopic compositions of orangeites largely overlap the ‘enriched MARID’ field and extend towards (and, a single analysis, into) the field of ‘depleted MARID’ (Fig. 8a). It is noteworthy that the analysed MARID samples in the depleted field were entrained by archetypal kimberlite magmas and, to

Table 1 | Solution-mode Sr-Nd-Hf isotope results for clinopyroxene in MARID sample XM1/331.

<table>
<thead>
<tr>
<th>Element</th>
<th>Ppm.</th>
<th>Measured</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb</td>
<td>5.01</td>
<td>0.0250</td>
<td>±0.0005</td>
</tr>
<tr>
<td>Sr</td>
<td>580.7</td>
<td>0.708135 ± 0.000018</td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>7.82</td>
<td>0.512122 ± 0.000008</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>43.34</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>0.068</td>
<td>11.87</td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>0.00813</td>
<td>±0.000005</td>
<td></td>
</tr>
<tr>
<td>εHf</td>
<td>−15.1</td>
<td>−13.7</td>
<td></td>
</tr>
</tbody>
</table>

MARID, mica-amphibole- rutile-limonite diopsids.

Figure 8 | Sr-Nd-Hf isotopic composition of MARID minerals and southern African orangeites andkimberlites. (a) ⁸⁷Sr/⁸⁶Sr vs εNd, (corrected for t = 90 Myr ago, that is, approximate age of the entraining Kimberley kimberlites) of XM1/331 clinopyroxene and minerals (apatite, clinopyroxene, K-richite) in previously analysed MARID xenoliths from the Kimberley area39,38, and initial ⁸⁷Sr/⁸⁶Sr and εNd values of <250 Myr archetypal kimberlites, transitional kimberlites and orangeites from southern Africa16. (b) εNd vs εHf of XM1/331 clinopyroxene and southern African archetypal kimberlites, transitional kimberlites and orangeites55,49. εHf(90Ma) range of XM1/331 zircon is also shown. Terrestrial array from Vervoort et al.48.
some extent, could be isotopically re-equilibrated with and/or contaminated by the entraining kimberlite. These observations and inferences have been used to argue that MARID rocks were produced by orangeite melts at lithospheric mantle conditions. In the following discussion, we provide additional constraints supporting a genetic link between MARID assemblages and orangeite magmas. However, we also demonstrate that MARID metasomatism in the Kimberley area predates the formation of orangeite melts. Therefore, previous models are untenable and we show that it is more likely that MARID metasomatized mantle was the source for orangeite magmatism. Evidence supporting the origin of orangeites from MARID mantle includes:

Hafnium isotopes. The Hf isotopic compositions of minerals in MARID sample XM1/331 reflect the proposed MARID-orangeite genetic link. The Nd-Hf isotopic composition of XM1/331 clinopyroxene and the Hf isotopic ratios of MARID zircons analysed in this and a previous study overlap the range of South African orangeites (Fig. 8b) including those in the Barkly West-Boshof area.

Oxygen isotopes. Schulze et al. suggested that the oxygen isotopic composition of garnet megacrysts in orangeites (\(\delta^{18}O = 5.59 \pm 0.18\%\)) compared with 5.24 \(\pm 0.15\%\) for garnet megacrysts in kimberlites) requires a \(\delta^{18}O \)-rich component in the source of orangeites. Thus, it is noteworthy that several oxygen isotope analyses of MARID zircons analysed in this and a previous study plot above the mantle range (Figs 6 and 7). This suggests that heavy oxygen isotopic compositions could be a characteristic feature of MARID rocks. The formation of zircon rims with depleted trace element contents (megacrust like) and the presence of baddeleyite and zirconolite coronae around XM1/331 zircons (Fig. 4), indicates interaction with fluids/melts after zircon formation. The well-constrained U-Pb age of 90.1 \(\pm 0.6\) Myr ago produced from all zircon rims and bright CL areas (plus some dark CL areas; Supplementary Fig. 6) suggests that this interaction occurred during the kimberlite magmatic event that affected the Kimberley area at \(\approx 81–95\) Myr ago (Fig. 2; see also ref. 39). Previous oxygen isotope studies of mantle xenoliths in the Kimberley area have reported anomalously low \(\delta^{18}O \) values (<5\%) for minerals that crystallized from, or interacted with, kimberlite-related fluids/melts. Therefore, interaction with kimberlite-related fluids might be expected to lower the originally high \(\delta^{18}O \) values of XM1/331 zircons, which is consistent with mantle-like values shown by some of the analyses (Fig. 7). Similarly, the trace element compositional variations shown by XM1/331 zircons (Supplementary Fig. 7) could be explained by mixing between existing, trace element-enriched MARID zircons and trace element-poor domains that formed close to the time of kimberlite magmatism. The lack of systematic correlation between O isotope and trace element compositions (and hence CL response) is probably due to the variable diffusion rates of oxygen compared with the trace elements in summary, higher-than-mantle \(\delta^{18}O \) values of XM1/331 zircons appear to be an original feature of MARID zircons, whereas lower \(\delta^{18}O \) values probably reflect subsequent interaction with fluids/melts related to the kimberlite magmatic event at \(\approx 90\) Myr ago.

Carbonate-apatite inclusions. Additional constraints supporting a genetic link between MARID rocks and orangeites derive from the composition of primary inclusions in MARID minerals. Although the volatile component of orangeites is dominated by \(H_2O \), the high concentrations of \(CO_2 \) and \(P \) in orangeite magmas (4.2 \(\pm 2.8 \) and 1.9 \(\pm 0.8\) wt%, respectively) require a source hosting carbonates and phosphates. In particular, the absence of mantle-derived carbonates (that is, unrelated to late-stage kimberlite or crustal fluids) in MARID rocks represents one of the major compositional differences between MARID rocks and orangeites. The current and previous studies of primary inclusions in MARID minerals have shown that, in addition to typical MARID phases (phlogopite, K-richterite, clinopyroxene, rutile, ilmenite, occasional zircon), apatite is a common included mineral. Furthermore, our SEM observations demonstrate that alkali-rich carbonates (for example, shortite, Na-K-bearing dolomite; Fig. 5) are also important primary inclusions in MARID minerals. Therefore, it seems likely that carbonates and apatite in MARID rocks were interstitial to the major silicate minerals and were subsequently removed or replaced through interaction with the highly reactive host kimberlite magma or related fluids. There is abundant evidence for the crystallization of serpentine, calcite, phlogopite, sulphates and other volatile-rich minerals in veins traversing MARID rocks, from late-stage kimberlite or crustal fluids during or after xenolith entrainment by kimberlite magmas (this study and refs 12,18,19,35).

Geochronology. The available geochronological data for MARID rocks, the host Kimberley kimberlites and the adjacent Barkly West-Boshof orangeites, support the suggestion of a MARID mantle source for orangeite magmas. U-Pb dating of zircons in MARID xenoliths entrained by the Kimberley kimberlites provides ages as old as \(\approx 130\) (this study) and \(\approx 142\) Myr ago. In addition, Pearson et al. reported a Re-Os model age of 170 \(\pm 30\) Myr ago for a Kimberley MARID xenolith. These ages extend the timing of MARID metasomatism in the Kimberley region before orangeite magmatism (114–128 Myr ago). The Barkly West-Boshof orangeite magmatism was the emplacement of Karoo dykes and lavas at \(\approx 180\) Myr ago. It is therefore likely that MARID assemblages crystallized from melts produced during the Karoo event, coeval with phlogopite-rich metasomatism in the lithospheric mantle beneath the Kimberley region (LIMA U-Pb in Fig. 2). MARID zircon ages were then partially reset by subsequent geological events.

Depth constraints. Finally, based on the thermobarometry of entrained xenoliths, it is estimated that orangeite magmas originated from minimum depths of 150–200 km, corresponding to the lower part of the lithospheric mantle in the garnet stability field. Experimental petrology has shown that MARID assemblages are stable to the base of the lithospheric mantle in cold cratons such as the Kaapvaal; this is confirmed by the occurrence of K-richterite + phlogopite inclusions in diamonds. Primitive mantle-normalized trace element patterns for orangeite rocks show characteristic relative depletions in Rb, K, Sr, Nb, Ta and Ti compared with elements of similar incompatibility in mantle peridotites. One explanation for these geochemical features is the occurrence of residual phases in the melt source that concentrated these elements (that is, bulk solid/liquid partition coefficient for these elements >1). The occurrence of residual MARID minerals, such as phlogopite (Rb, K), diopside or K-richterite (Sr) and rutile or ilmenite (Ti, Nb, Ta), in the orangeite source could account for the trace element characteristics of orangeites. This is consistent with experimental results for partial melting of a synthetic Fe-free MARID assemblage at mantle conditions, which showed that diopside, rutile and a K-rich phase (phlogopite or K-richterite) are included in the partial melting residue. In contrast to previous
Characteristics (for example, relative depletion of Rb, K, Sr, Nb, consistent with the major (for example, Mg#) and trace element (possibly in veins) and adjacent refractory peridotites would be lithospheric mantle magmas with features similar to mantle1,14,17. The condition that orangeite melts are sourced from a carbonated oxide and compatible trace element (for example, Ni, Cr) could be due to either the occurrence of garnet in the peridotite source9,17, which remains in the partial melting residue, or the LREE-rich composition of the MARID veins. Whereas both MARID veins and peridotitic wall rocks would control the major oxide and compatible trace element (for example, Ni, Cr) composition of the orangeite partial melt, the incompatible trace element and Sr-Nd-Hf isotopic compositions would be governed by the MARID source rocks (see ref. 58). The occurrence of carbonates in MARID rocks would also satisfy the condition that orangeite melts are sourced from a carbonated mantle1,14,17.

It is concluded that a MARID-reinforced peridotitic mantle represents the best candidate for the source of orangeite magmas. MARID rocks18–22 and rocks produced by metasomatized lherzolitic mantle magmas8 with features similar to orangeites1–4,7 have been identified in localities worldwide. It is therefore likely that the genetic relationship that we have established between mantle MARID assemblages and orangeite melts in South Africa can be extended to other continents.

U-Pb and oxygen isotope analyses of zircons. Thin-section fragments from sample XM1/331, which contained numerous zircon grains, were cut and encased in the calibration material for zircon measurements with Hf as the internal standard. Natural and synthetic glasses NIST610, NIST612, BCR-2-G and BHVO-2-G were also analysed as unknowns to verify data integrity (Supplementary Table 5); these glasses yielded results consistent with published values (that is, GeoRef preferred values36).

Hafnium isotope analyses of zircons. In situ Lu–Hf isotopic measurements of the zircon melt inclusions were undertaken at the University of Melbourne using a Nu Plasma multicollector ICP–MS interfaced with an excimer 193 nm ultraviolet laser ablation probe. Laser ablation conditions were as follows: ablation time of 60 s; fluence < 3 J cm−2; repetition rate of 5 Hz; standard delay of 30 s for sample washout and background measurements; beam size of 55 μm. Raw data were processed using the Iolite software package36. Isotopic interferences of 176Yb and 179Hf were assessed and corrected following the procedure described by Woodhead et al.65 Plesovice zircon standard36 was analysed to correct for instrumental drift, whereas Temora-2 and 91500 zircon references67 were measured as unknowns to assess data quality and returned values (176Hf/ 177Hf = 0.282660 ± 0.000070 and 0.282313 ± 0.000049 (n = 3; 2 s.d.)) within error of the solution values provided by Woodhead and Hergt67 (Supplementary Table 8). On the basis of the results for standards (this session and long term), analytical reproducibility (extraction precision) for 176Hf/ 177Hf is ~ ± 0.000050 (2 s.d.), equivalent to ~ ± 1.8 eHf units.

Major and trace element analyses of mineral phases. Electron microprobe analyses of MARID minerals were carried out on thin sections and epoxy mounts, using a Cameca SX50 electron microprobe at the University of Melbourne and employing the same conditions described by Giuliani et al.36 Trace element abundances in MARID minerals were measured in situ, using an Agilent 7700x quadrupole ICP–MS interfaced with an excimer 193-nm ultraviolet laser ablation probe. Laser ablation conditions were as follows: ablation time of 60 s; fluence ~ < 3 J cm−2, repetition rate of 5 Hz; standard delay for sample washout of 15 s; longer delay for background measurements (50 s) for every five analyses; beam size of 30–42 μm. The synthetic glass NIST612 was used as the calibration material for measurements of K-richster, clinopyroxene and phlogopite, and 46Ca (K-richsterite and clinopyroxene) and 49Mg (phlogopite) were the internal standards with Ca and Mg concentrations determined from electron microprobe analyses. For analyses of ilmenite and rutile, we employed BHVO-2-G as the calibration material and 40K was the internal standard, whereas NIST610 was used as the calibration material for zircon measurements with Hf as the internal standard. Natural and synthetic glasses NIST610, NIST612, BCR-2-G and BHVO-2-G were also analysed as unknowns to verify data integrity (Supplementary Table 5); these glasses yielded results consistent with published values (that is, GeoRef preferred values36).
ARTICLE

Acknowledgements

We acknowledge Graham Hutchinson for support with microprobe analyses, Alan Greig for assistance with laser ablation and solution ICP–MS analyses, Karsten Goemann for support with FE-SEM analyses and Matthew Felgate for performing the Nd-Hf isotope analysis. De Beers Consolidated Mines and Simon Shee are thanked for providing access to the studied samples. We acknowledge funding from the Australian Research Council (D.P., V.S.K. and M.L.F.). This is contribution 587 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au).

Author contributions

The manuscript and ideas therein were mainly developed by A.G., D.P., J.D.W., V.S.K. and M.L.F. with contributions from all the other co-authors. D.P. collected the samples. A.G., A.S. and V.S.K. characterized the inclusions in MARID minerals. A.G. and M.L.F. with contributions from all the other co-authors. D.P. performed the in situ Hf isotope analyses of zircons, whereas R.A.A. carried out the in situ U-Pb and O isotope analyses of zircons. R.M. contributed to the solution-mode analysis of Sr-Nd-Hf isotopes and interpretation of isotopic data.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications.

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Giuliani, A. et al. Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle? Nat. Commun. 6:6837 (2015). doi: 10.1038/ncomms7837