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Abstract

Background: Sooty (Puffinus griseus) and short-tailed (P. tenuirostris) shearwaters are abundant seabirds that range widely
across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for
monitoring and ecosystem conservation and management.

Methodology/Principal Findings: Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand
and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-
surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions
foraged in the Polar Front zone, and showed particular overlap in the region around 140uE. Short-tailed shearwaters from
South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging
effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of
copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the
flight paths taken by the birds on long foraging trips to Antarctic waters.

Conclusions/Significance: The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species
and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the
importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and
the corresponding localised increases in the productivity of the Polar Front ecosystem.
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Introduction

Sooty (Puffinus griseus) and short-tailed shearwaters (P. tenuirostris)
are abundant seabirds that range widely across global oceans [1],
breeding principally in New Zealand, south-eastern Australia, and
southern South America [2,3]. They are of cultural and economic
importance for Maøori and Tasmanian aboriginal societies [4,5],
important as predators within their marine ecosystems, and as
engineers within their island ecosystems due to their burrowing
and deposition of biological material [6,7,8]. Understanding the
foraging ecology of these birds is important for continued
monitoring of their populations [9], conservation and manage-
ment of their island ecosystems [10], and facilitating their use as
indicators of Southern Ocean prey stocks [9,11].

Breeding adult sooty and short-tailed shearwaters forage locally
to the colony in order to provision their chicks at a maximal rate,
but periodically undertake long foraging trips to Antarctic waters
[12,13,14,15]. During long trips the adults forage to replenish their
own body mass as well as to provision their chicks [12]. This
pattern has also been reported for other species [e.g. 16]. New
Zealand sooty shearwaters make long foraging trips in a spatially
bimodal pattern, utilising foraging grounds around the Polar
Front, to the south-east and south-west of New Zealand [1,13].
The foraging patterns of these birds were recently examined in
relation to bathymetry, sea surface temperature, primary produc-
tivity, and surface wind speeds [13]. However, questions remain
regarding the foraging behaviour of these shearwaters in the high
latitude regions of the Southern Ocean, including their apparent
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lack of use of the Polar Front zone directly south of New Zealand,
and the overlap of their foraging ranges with those of conspecifics
such as short-tailed shearwaters [2].

Many studies have shown that oceanic winds can influence the
flight of seabirds during foraging trips [e.g. 17,18,19,20,21]. The
weather systems and wind patterns south of New Zealand and
Australia generally comprise polar easterlies near the Antarctic
continent, and westerly winds around and to the south of the
Subantarctic and Polar Fronts (, 50Ð55uS). North of the
Subantarctic Front, alternating low- and high-pressure systems
result in variable winds [22]. It seems likely that oceanic winds
should have an effect on the foraging strategies of these birds, and
plausible that a spatially bimodal foraging pattern might be due in
part to wind considerations.

The study of wide-ranging marine predators such as these is a
challenging field. Electronic tagging technologies typically play an
vital role in such studies [23], but greatest insight can potentially
be obtained by combining tag data with other information such as
ship-based observations of predators and prey, hydrodynamic
model data, and ocean parameters [11,23,24,25]. Here, we
integrate tracking data from sooty and short-tailed shearwaters,
a long-term data set of at-sea observations of seabirds, pelagic
trawl data, records of near-surface zooplankton, and remotely-
sensed ocean surface wind data to provide a synoptic view of the
foraging behaviour of these seabirds. Our aims were to determine
the extent to which oceanic winds influenced foraging behaviour,
the overlap in foraging habitat between species and populations,
and to examine the relationships between foraging and potential
prey distributions and oceanographic features.

Methods

Ethics statement
All protocols employed in the sooty shearwater tracking study

were approved by the University of California at Santa Cruz
Institutional Animal Care and Use Committees, the Wellington
Conservancies of the Department of Conservation, New Zealand,
and the Kia Mau Te TõøtõøMo Ake Toønu Atu (Keep the TõøtõøForever)
research programme. The South Australian short-tailed shearwater
study was approved by the Department of Primary Industries and
Resources of South Australia (ethics number 16/03), and the
Department of Environment and Heritage (permit number
A24684). The Tasmanian short-tailed shearwater study was
approved by the University of Tasmania Ethics Committee
(A0008138) and the Nature Conservation Branch of Tasmanian
Parks and Wildlife Service (permit FA 05151). The SO-CPR survey,
shipboard surveys of seabirds, and pelagic trawls were approved by
the Australian Antarctic Science Advisory Committee (AAS
Projects 472, 2208, and 2070), with AMLR Act permits 96/1
(trawls) and 05-10_047 (SO-CPR).

Data collection Ð sooty shearwater foraging trips
Tagging was conducted on breeding adult birds on Whenua

Hou (Codfish Island), New Zealand (167u399E 46u469S) and Mana
Island, New Zealand (174u509E 41u069S). Details are given by
Shaffer et al. [13]. The tags used were Lotek LTD 2400 archival
data loggers (Lotek Wireless, St. JohnÕs, Newfoundland). These
tags yielded one location fix per day, and also recorded light
intensity, temperature, and pressure at a user-programmable
sampling rate. The pressure data were used to infer diving activity,
and the temperature data to refine position estimates by matching
against sea surface temperature data [13,26]. Eight birds were
tagged for a single foraging trip with tags set to record at either 24
or 32 seconds (referred to as fast sampling rate tags). This sampling

rate was chosen to provide reasonably fine-scale information on
diving activity. A subsequent deployment of 19 birds was made
using a slower sampling rate (432 seconds), designed to record
behaviour throughout the remainder of breeding and the six
month migration that followed [1]. The slower sampling rate
reduces the amount of data collected each day, and so allows for
longer times between recovery and download of tags.

Data collection Ð short-tailed shearwater foraging trips
Tagging was conducted on breeding adult birds in two

separate studies: one from two South Australian offshore islands
(Althorpe Island, 136u529E 35u229S, and St Peter Island,
133u359E 32u179S) and the other from an offshore Tasmanian
island (Wedge Island, 140u409E 43u089S). Details of the South
Australian studies are given in [27]. Briefly, these birds were
tagged with KiwiSat 202 satellite transmitters (Sirtrack Ltd,
North Havelock, New Zealand), with a transmission interval of
60s. In this study we use data from long foraging trips, comprising
a single long trip from each of 11 individual birds, spread over
three breeding seasons (Feb/Mar 2005, n = 4; Feb 2006, n = 1;
Feb/Mar 2007 n = 6). Due to transmitter loss and battery failure,
none of these 11 trips was completely recorded. However, all but
one trip were recorded to at least 50uS, and three trips were
recorded to south of 60uS [27]. Thus, these records give a
reasonable indication of the outward leg of long foraging trips by
these birds. The Tasmanian birds were tagged with light-based
geolocation tags (Lotek LTD 2400 and BAS Mk3, British
Antarctic Survey). Long foraging trip data from February and
March of 2006 (n = 2 birds, 5 trips total) and 2008 (n = 2 birds,
5 trips total) were used here.

Data collection Ð at-sea observations of shearwaters
The at-sea observations were taken from data collected by the

Australian Antarctic programme over the 1980/81 to 2005/06
austral summer seasons [28,29]. The details of the methodologies
used to collect observations and physical oceanographic and
environmental data are described elsewhere [30,31]. Briefly,
observations of the numbers and behaviours of all species of
seabirds present within a 300m forward quadrant of the ship were
recorded continuously while the vessel was underway during
daylight hours. Ship-followers were excluded from all analyses,
following the BIOMASS Working Party on Bird Ecology protocols
[32]. Ship-followers typically associate with the vessel for extended
periods, either following the vessel at the stern or circling the
vessel, or both. Neither sooty nor short-tailed shearwaters are
generally regarded as ship-followers, typically flying in straight
lines and only detouring around the vessel if required to avoid
collision.

Data collection Ð fish, squid, and zooplankton
distributions

Mesopelagic fish and squid distributions in the Polar Front
region around 140uE were obtained from an Australian voyage
conducted during September 1996. Fish and squid sampling was
undertaken using an International Young Gadoid Pelagic Trawl
with a multiple-opening pelagic net (MIDOC). Four depth strata
were sampled at each station, at nominal depths of 0Ð250m, 250Ð
500m, 500Ð750m, and 750Ð1000m [33]. 37 trawls were made
from 5Ð20 September, on a northward transect from approxi-
mately 140uE, 60uS to 146uE, 46uS (Figure 1).

Near-surface zooplankton data were obtained from the
Southern Ocean Continuous Plankton Recorder (SO-CPR) survey
[34]. In this survey, the CPR instrument is towed at a constant
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depth of, 10m, at, 100m behind the vessel. A 270mm mesh is
used to filter the water flowing through the instrument and the
samples preserved in formalin. In subsequent laboratory analysis,
the silks are cut into segments representing 5 nautical miles
(referred to as ÔÔtow segmentsÕÕ) and all zooplankton on the silk
identified [34,35]. The SO-CPR survey has been operating since
1991, and due to the relative ease of deployment of the instrument,
the survey has broad coverage of the waters south of Australia, and
to a lesser extent, New Zealand. We used data from 48 voyages
that surveyed areas of the Polar Front zone between 130uE and
200uE during the months of FebruaryÐApril. These data
comprised a total of 1288 tow segments within the Polar Front
zone Ñ that is, within the northern and southern branches of the
Polar Front, as defined by Sokolov & Rintoul [36]. The
continuous plankton recorder survey effort in the Polar Front
zone was mostly concentrated between 130uE and 155uE, with
particularly heavy coverage at 140uE and 150uE resulting from
repeat sampling along the World Ocean Circulation Experiment
SR3 transect (, 140uE) and by the Japanese vesselShirase along
150uE. We examined the pooled abundances of all copepod taxa,
since copepods are a common prey of myctophids [37,38,39]. We
note that the patterns of total zooplankton abundance were very
similar to those of copepods.

Physical oceanography
Mean positions of Southern Ocean fronts were obtained using

the technique of Sokolov & Rintoul [36]. The Polar Front zone is
defined here as the zone between the northern and southern
branches of the Polar Front. Estimates of vertical water velocity at
1095m depth were obtained from the CSIRO Mk 3.5 model [40].
Surface chlorophyll concentrations derived from satellite ocean
color measurements were based on eight day mean level 3
standard mapped images of chlorophyll on a global 9 km
equidistant cylindrical grid from SeaWiFS and were obtained
from the Goddard Space Flight Center [41]. Except where
otherwise specified in the text, we use surface chlorophyll to refer
to chlorophyll-a detected by satellite and use this quantity as a
proxy for phytoplankton biomass.

Analyses
All analyses were conducted in Matlab (Mathworks, Natick MA,

2009) and R (R Foundation for Statistical Computing, Vienna
2009).

At-sea observations from all years were pooled. The continuous
observations were binned into records representing 10-minute
surveys. There were a total of 13097 10-minute at-sea surveys

Figure 1. Sooty and short-tailed shearwater foraging in the Southern Ocean. A. Sooty shearwater tracks (grey lines) and dive locations
(black dots), with the short-tailed shearwater habitat utilisation from panel B included for reference. Note the overlapping use of the Polar Front zone
around 140uE. The northern and southern branches of the Polar Front (black) and the trawl transect (dotted orange) are shown. B. Short-tailed
shearwater tracks from two South Australian islands (red lines) and from Wedge Island, Tasmania (green lines), and their corresponding combined
habitat utilisation (background colours).
doi:10.1371/journal.pone.0010960.g001
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during FebruaryÐApril in the region 60uEÐ200uE, 40uS to the
Antarctic continent. Data for short-tailed and sooty shearwaters
were pooled, as these species are difficult to separate at sea.
Shearwaters were sighted in 3266 of these surveys, with an
estimated total of approximately 110000 individuals. The at-sea
data were collected on Australian Antarctic resupply and scientific
voyages, and so the survey effort is generally concentrated to the
south and west of Tasmania, extending to the Antarctic continent.
There was also survey effort in between Tasmania and Macquarie
Island (154u529E, 54u379S), but only very limited survey effort in
the region south of Macquarie Island. At-sea observations of
shearwaters with the behavioural category of ÔfeedingÕ were
extremely sparse: of the 3266 surveys in which shearwaters were
sighted, only 38 contained a record of feeding shearwaters. We did
not examine these records in detail. To assist in visual
interpretation, the spatial distribution of observed densities was
smoothed by local scatterplot (Lowess) smoothing applied to
log10(x+1)-transformed densities [42].

The processing steps applied to the sooty shearwater geoloca-
tion tag data in order to obtain daily position and diving activity
estimates have been described [1,43]. The Tasmanian short-tailed
shearwater geolocation data were processed similarly, although
these data were not processed to determine dive locations. The
South Australian satellite-tagged short-tailed shearwater positions
were filtered using the method of McConnell et al. [44].

The archival tags deployed on the sooty shearwaters allow
diving behaviour to be estimated. However, the tags using slow
sampling rates are unlikely to correctly represent behaviours that
occur on relatively short time scales. Thus, we examined dive
depths only from fast-sampling archival tags. The times of local
sunrise and sunset were calculated for each dive [45]. Sooty
shearwater diving activity recorded with fast sampling tags was
divided into two sets, such that dives south of 50uS (i.e. associated
with foraging in Antarctic waters) were in one set, and the
remainder in the other. The distributions of dive times and
maximum dive depths were compared between the two sets.

Diving information was not available for the short-tailed
shearwaters, and so we used an estimate of habitat utilisation
distribution to infer broad patterns in foraging effort. The habitat
usage was computed using a kernel density estimator, with a cross-
validation selection of smoothing parameter [46,47].

To gain a perspective on the overall effect of wind on potential
foraging flights, grids covering the birdsÕ potential foraging
grounds were constructed, with 2.5u longitude by 1.25u latitude
bins. The wind cost of visiting each grid cell was calculated using
method based on that of Felicõ«simo et al. [48]. Each simulated
foraging flight was broken into 6-hour segments. For a given
simulated flight segment, the associated wind was used to calculate
the energetic cost of that segment. The speed of the bird over the
ground (ground speed;Vg) can be written as a function of the
speed of the bird through the air (airspeed;Va) and wind speed
and direction [49]:

Vg~Vw cos bz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

a{V2
w sin

2 b
q

whereVw is the wind speed andb is the direction of the wind with
respect to the flight track. The theoretical power required for a
bird in level flapping flight is given by [50,51]:

P~qzr
"
VazsV3

a

where q, r, and s are constants that incorporate aerodynamical
flight parameters such as wing span and body mass [50]. We

assumed that the birds fly at their maximum range speed (that is,
the airspeed that yields maximum distance over the ground per
unit energy expended). For a given wind speed and direction,Vmr,
and the correspondingVg and P, can be found by minimising
P
"
Vg [49]. An example of the resulting cost function is shown in

Figure 2, and is minimal for tailwinds, moderate for cross-winds,
and heaviest for head winds.

For the flight parameters (q, r, ands above), we used a wing span
of 1.03m and wing area of 0.0893m2 for sooty shearwaters and
0.93m and 0.076m2 for short-tailed shearwaters [52]. Sooty
shearwaters embarking on a long foraging trip were assumed to
have a body mass of 790g and carrying no food payload [12].
Adult birds gain body mass on long foraging trips, and on their
return trips we assumed a body mass of 870g and a food payload
of 193g [12]. For short-tailed shearwaters the corresponding
values were 570g (outward body mass), 590g (return body mass),
and 156g (return food payload) [14].

The cost of an individual simulated foraging trip was calculated
as the sum of the costs of its 6-hour segments. We used near-
surface wind data from the NCEP/DOE Reanalysis 2 data set
(http://www.esrl.noaa.gov/psd/). These are model-based esti-
mates of the 10m wind speed and direction, at 6-hour intervals
and on a spatial grid of approximately 2u resolution. Outward
flight legs were simulated as flights from the colony to the centre of
the destination grid cell, and in the other direction for return
flights. The intervening foraging time was not considered for cost
calculations. 10000 foraging trips were simulated to each grid cell.
The departure date of each simulated foraging trip was randomly
sampled from the departure dates of the actual (recorded) foraging
trips.

In the absence of wind effects, the energy expended during flight
at constant speed is proportional to the distance travelled.
Including wind effects introduces variations about this relation-
ship. Thus, to best illustrate the spatial variability in flight costs due
to wind effects, the costs are presented as residuals (percentages
with respect to a smooth fit of cost against distance, fitted using
natural cubic splines in the R splines library). In order to make the
residuals relevant to potential Southern Ocean foraging locations,
only grid points south of the colony and within 3500km (sooty
shearwaters and Tasmanian short-tailed shearwaters) or 5000km
(South Australian short-tailed shearwaters) of the colony were
included in the fit.

Results

Foraging flights and spatial distributions of shearwaters
Shearwaters from all three tracking studies foraged in the

vicinity of the Polar Front (Figure 1). Sooty shearwaters made use
of two principal foraging areas: one to the south-west of New
Zealand at approximately 140uE, and the other to the south-east
at approximately 160uW (Figure 1a). Of the 31 long foraging trips
made by sooty shearwaters, 21 were directed to the south-eastern
foraging zone (by ten individual birds), and ten to the south-west
(by four birds). Individual birds almost exclusively made long
foraging trips in only one direction: only one bird made trips to
both the south-western and south-eastern zones. The South
Australian short-tailed shearwaters foraged from, 110uEÐ150uE,
with particularly high usage of the region around 140uE
(Figure 1b). Foraging flights were generally made with an
approximately southward outward leg followed by east-to-west
foraging. The South Australian short-tailed shearwaters also
foraged south of the Polar Front, as far west as 55uE in waters
at or south of the southern boundary of the Antarctic Circumpolar
Current (, 64uS). The foraging flights of the Tasmanian short-
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tailed shearwaters were consistently made in a clockwise direction,
heading to the Polar Front zone at, 165uE and then foraging
east-to-west, with an approximately north-east return route to
their colonies (Figure 1b).

At-sea observations of shearwaters were generally distributed
over offshore waters around and to the south of the Polar Front,
from approximately 60uE to 150uE (Figure 3). The highest
densities were observed in the vicinity of the Polar Front around
approximately 140uE, and also close to the coast of Tasmania.
The high densities of at-sea observations of shearwaters in the
Polar Front zone at, 140uE were reasonably consistent across
years. Six voyages intersected this zone (1993, 1994, 1998, 2000
(2), and 2006). On four of these voyages the observed densities of
shearwaters were higher in this zone than the remainder of the
voyage (Wilcoxon rank sum test,p,0.001 in each case). In the
remaining two voyages the densities were not significantly different
in this zone compared to the remainder of the voyage.

Diving behaviour of sooty shearwaters
Sooty shearwater dives recorded by fast sampling archival tags

north of 50uS (n = 801 dives by seven individual birds) occurred
from just before sunrise through to sunset, with broad peaks of
dive activity centred on mid-morning and late afternoon (grey bars
in Figure 4a). Dive activity south of 50uS (n = 933 dives by two
individual birds) also occurred throughout the day, but showed
distinct peaks just after sunrise and just before sunset (white bars in
Figure 4a). The diel distributions of dive activity north and south
of 50uS were significantly different (p,0.001,x2

12= 245.1).
The median maximum dive depth (fast tags; all dives combined,

n = 1734) was 10.1m (interquartile range IQR 12.8m). The dives
south of 50uS (median maximum depth 11.9m, IQR 14.5m) were

deeper than those north of 50uS (8.5m, IQR 10.2 m; Wilcoxon
p,0.001). The dive depths tended to be shallowest around sunrise
and sunset, becoming deeper during mid-morning and mid-
afternoon, and shallow again around midday (Figure 4b).

Simulations of wind costs during long foraging flights
The simulated wind costs forthe three tracking studies

showed similar broad patterns, with low-cost regions directly
south of the colonies, and higher-cost regions extending in
corridors roughly south-east and south-west from the colonies
(Figure 5). The Polar Front region directly south of New
Zealand, sparsely utilised by the sooty shearwaters, was both
closer to the colonies and more energetically favourable (i.e.
lower cost) than their observed foraging zones to the south-east
and south-west of New Zealand.

The observed South Australian short-tailed shearwater foraging
activity corresponded to energetically-favourable areas (Figure 5b),
whereas both the Tasmanian short-tailed shearwaters (Figure 5c)
and the sooty shearwaters (Figure 5a) made outward flights to the
south-east of their colonies, into apparently energetically-costly
areas. Although variable, the prevailing wind over much of the
Southern Ocean south of Australia and New Zealand was
approximately north-westerly (i.e. blowing towards the south-
east). South-easterly flight from the colonies was therefore
accompanied by favourable (near-tailwinds) on the outward leg,
but entailed return flights against headwinds. Because the wind
cost function is asymmetric (that is, the penalties associated with
head winds are proportionally higher than the benefits provided
by tailwinds), such trips were more energetically costly overall.

For short-tailed shearwaters the minimum-cost flight paths
from the simulations generally showed good agreement with the

Figure 2. An example of the wind cost function used for the cost simulations. Costs are shown for a range of wind speeds and angles. This
example is for a sooty shearwater carrying no food payload. Angles are relative to the bird flight direction: an angle of 0u corresponds to a tailwind,
90u and 270u to cross-winds, and 180u a headwind.
doi:10.1371/journal.pone.0010960.g002
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actual flight paths recorded from the tags. The simulated
minimum-cost flight paths for South Australian short-tailed
shearwaters foraging in regions south of the Polar Front zone
involved a roughly southerly flight to near-Antarctic waters,
followed by westerly flight using the polar easterly winds near
the Antarctic coast as tailwinds (thick green line in Figure 5b), in
good agreement with the observed flight paths of the tagged
birds. These birds did not tend to forage to the east of their
colonies south of the Polar Front, possibly because this would
entail return flights against unfavourable winds. The minimum-
cost return flight path from Antarctic waters was close to the
most direct route (purple line in Figure 5b). Although none of
the tags survived long enough to capture a return flight path, the
at-sea densities (Figure 3) are consistent with reasonably direct
return flights, as are previously published tracks from short-
tailed shearwaters [53].

Physical oceanography of the foraging zones
Strong, vertically-coherent, topographically-driven upwelling is

present in several sectors of the Polar Front zone in the region of
interest, notably around 140uE and 165uE, and east of 170uE
(Figures 6 and 7a). These zones of strong upwelling extend over
several hundred kilometres and are driven by the interaction of the
eastward-flowing Antarctic Circumpolar Current with large-scale
bathymetric features: the South-East Indian Ridge (140uE), and
the Pacific-Antarctic Ridge (east of 165uE). These regions of
upwelling correspond to the regions of high surface chlorophyll
concentrations (Figure 7b), and with shearwater foraging effort in
the Polar Front zone (Figure 7d).

Productivity is generally higher south of the Polar Front, due to
a range of factors including higher upwelling rates, iron input from
melting sea ice, and shallower mixed layers [54,55]. The at-sea
observations and the tracks of the South Australian short-tailed

Figure 3. Observed at-sea densities of sooty and short-tailed shearwaters in the Southern Ocean. A. Individual survey records (number
of birds per 10-minute survey). B. Smoothed density surface fit with local scatterplot smoothing (see text). Locations of Southern Ocean fronts from
north to south are shown in black: SAF-M, middle branch of the Subantarctic Front; PF-N, northern branch of the Polar Front; PF-S, southern branch of
the Polar Front; SB-ACC, southern boundary of the Antarctic Circumpolar Current.
doi:10.1371/journal.pone.0010960.g003
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shearwaters extend into this zone, and the observed at-sea
shearwater densities (Figure 3) tend to coincide with the changes
in the upwelling rates and primary production (e.g. the higher
densities of shearwaters observed west of approximately 85uE
correspond to the region of strong upwelling and intensive
chlorophyll bloom near the southern Kerguelen Plateau [54]).

Potential prey abundances
The trawl transect was made in the longitude band 140uEÐ

146uE, and gives an indication of latitudinal variation in pelagic
prey availability. North of 50uS, the trawls from the top 500m of
the water column were dominated by pyrosomes (65% by number)
and salps (11%), and the fishPhotichthys argenteus (8%; Figure 8).
From 50uSÐ54uS, myctophids overwhelmingly dominated (90%),
but these numbers were strongly skewed by one particularly large
haul of Electrona carlsbergi, which contributed 61% of the total
myctophids caught in this latitude band. Temporarily excluding
this haul ofE. carlsbergi (Figure 8 is presented with this haul of
E. carlsbergi excluded), the total myctophid component in the
54uSÐ50uS band was 54% (mainlyGymnoscopelus microlampas, 15%;
G. piabilis, 8%; and unidentifiableProtomyctophum, 8%). Other fish
(41%; mainly unidentifiable fish, 17%; andPersparsia kopua, 13%)
and small numbers of cnidarians and salps (3%) made up the
remainder. South of 54uS the hauls were again dominated by
myctophids (67%; mainlyG. braueri, 22%; Krefftichthys anderssoni,
15%; andE. antarctica, 9%), with smaller numbers of other fish
(14%; mainlyBathylagus species, 6%; and unidentifiable fish, 4%),
and the coronate scyphomedusaeAtolla wyvillei (11%) andPeriphylla
periphylla (6%).

Figure 7c shows the longitudinal distribution of near-surface
copepod abundances in the Polar Front zone. Abundances were

highest around 145uE and to the east of 170uE, although survey
effort in the latter sector was sparse. The regions of higher copepod
abundance generally coincided with the regions of persistent
upwelling (Figure 7a), high surface chlorophyll concentrations
(Figure 7b), and with shearwater foraging effort (Figure 7d).

Discussion

Likely prey of shearwaters on long foraging trips
The diet of short-tailed shearwaters has been relatively well

described [14,56,57], and on long foraging trips they predomi-
nantly consume myctophids (lantern fish), with a small euphausiid
component (likelyEuphausia vallentini) [56,57]. Some myctophids,
including the relatively commonE. antarctica, G. braueri and K.
anderssoni are rich in wax esters [58,59], which act as long-term
energy reserve molecules rather than immediate energy supply
[60] and they form an important component of stomach oil that is
fed to chicks [61]. A number of studies show that sooty
shearwaters consume a wide range of crustaceans, fish, cephalo-
pods, and salps [e.g. 62,63,64,65]. The specific prey of sooty
shearwaters on long foraging trips has not to our knowledge been
studied, although it has been suggested that in Antarctic waters
sooty shearwaters also principally forage for myctophids [12]. The
results from our study support this suggestion.

The observed foraging zones of the sooty shearwaters in this
study, like those of the short-tailed shearwaters, are consistent with
the general patterns of myctophid distribution in the Southern
Ocean. Myctophids are widely distributed and abundant,
particularly from the Polar Front zone south to the Antarctic
continental shelf [37,38,66]. Around and to the south of the Polar
Front zone, myctophids are commonly recorded within 200m of

Figure 4. Diel distributions of sooty shearwater diving activity. A. Distributions of sooty shearwater dives with respect to time of day. B. Dive
depths with respect to time of day. The median (cross) and interquartile range (bars) are shown. Grey bars indicate dives made from 30uSÐ50uS, and
white bars indicate dives made south of 50uS.
doi:10.1371/journal.pone.0010960.g004
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the surface [66,67], and rise to the surface waters at night [68,69].
Some myctophid species are also found north of the Polar Front
zone (e.g.E. carlsbergi, G. microlampas, G. piabilis), but inhabit deeper
waters (250Ð600m) in these areas [67,70], which may limit their
availability to surface-diving seabirds. These general distribution
patterns were observed in the trawl data, with increased
myctophid densities south of 50uS.

The observed timing of sooty shearwater dive activity in
Antarctic waters is also consistent with the proposition that the
sooty shearwaters were foraging for myctophids, or other prey that
migrate to near-surface waters during night-time hours. Sooty
shearwaters use visual prey detection methods, scanning for
underwater prey by immersing their heads before diving [71,72].
The observed distribution of dive activity in Polar Front waters
(peaking just after sunrise and just before sunset, with no night-
time diving) might represent a compromise between increased
prey availability (proximity to surface) and decreased visual prey
detectability during the hours of darkness. Sooty shearwaters have
been observed to feed on myctophids during the day in the
presence of other marine predators that drive the fish towards the
surface waters [65], and shearwaters are commonly observed in
association with cetaceans in Antarctic waters [e.g. 73]. The dive
depths reported here for sooty shearwaters are underestimates of
the true maximum dive depths, due to the low sampling rate (one
sample per 24 or 32s) of the tags relative to the time spent by the
birds at the deepest part of their dives. Capillary tube
measurements show that sooty shearwaters are capable of diving
to depths exceeding 60m [74,75].

The relatively low sampling rate of the tags also means that the
probability of failing to detect a dive is greater for dives of shorter
duration. It is possible that our finding of dawn and dusk diving in
high latitudes has been confounded by this bias. If, for example,
dive activity was in reality constant throughout the day, but the
dive durations were shorter around midday and longer around
dawn and dusk, then the distribution of detected dives would peak
around dawn and dusk, as we found here. However, we compared
the diel distribution of dive activity from fast sampling tags

(sampling rate 24s or 32s) to the distribution obtained from slow
sampling tags (432s; n = 3301 dives total by 18 individual birds;
results not shown), and found the distributions to be very similar.
Missed detections of short duration dives should be more
pronounced with the slow sampling tags, and since the
distributions match, we do not believe that the diel distribution
of dive activity is an artefact of sampling bias in this case.

Cherel et al. [57] reported thatEuphausia vallentini were the main
crustacean prey from long-trip samples in short-tailed shearwaters
from Tasmanian (Bruny Island) colonies.E. vallentini is distributed
to the north of the Polar Front [14,76,77]. The short-tailed
shearwaters in this study, particularly the South Australian birds,
were observed to forage in this region. AlthoughE. vallentini have
been reported in sooty shearwater diet samples [63], it seems
unlikely that sooty shearwaters principally target this species on
long foraging trips, since their primary foraging zones lie around
and to the south of the Polar Front zone (Figure 1). The South
Australian short-tailed shearwaters also foraged well south of the
Polar Front, in waters whereE. superba (Antarctic krill) is the most
abundant euphausiid. Birds tracked from Montague Island, NSW
[53] were observed to travel to Antarctic waters where krill is
common, as did a post-breeding bird from French Island, Victoria
[78]. Connanet al. [56,79] reported that lipid concentrations from
14 short-tailed shearwaters after long foraging trips did not match
those ofE. superba, and concluded that this euphausiid might not
be a major component of their diet. This result appeared to
contradict the above tracking studies as well as earlier stomach
samples and observed predation of shearwaters onE. superba
[80,81]. However, the results of Connanet al. [56,79] were
obtained from birds breeding on Bruny Island, Tasmania. The
small sample of Tasmanian (Wedge Island) birds tracked in this
study did not forage in waters whereE. superba might be expected.
Thus, this apparent contradiction might be a result of site-specific
differences in foraging area preferences of birds from different
regions and colonies.E. superba might still be an important dietary
component for some populations of short-tailed shearwaters, such
as those from South Australian islands.

Figure 5. Simulated wind costs of long foraging trips by sooty and short-tailed shearwaters. A. Simulated wind costs (background
colours) for sooty shearwaters. B. For South Australian short-tailed shearwaters. C. For Tasmanian short-tailed shearwaters. Costs are shown as
percentage residuals from smooth regression of cost against distance. For example, a value of 25% indicates that the cost to visit the area in question
is 25% higher than the average cost for potential foraging locations at the same geographical distance from the colony. Insets show regressions of
cost against distance. The thin green lines show outward flights from the colony; the thick green lines show the simulated minimum-cost paths from
the colony to representative points on the birdsÕ foraging grounds. The orange lines show the same information for the return trips. Grey lines show
the foraging components of flights (not shown in panel A for clarity). The purple lines show the direct (geodesic) routes. The northern and southern
branches of the Polar Front are also shown (black).
doi:10.1371/journal.pone.0010960.g005

Figure 6. Vertical water velocity at 1095m in the Southern Ocean. Twenty-year mean vertical velocity from the CSIRO Mk3.5 climate system
model. The northern and southern branches of the Polar Front are shown.
doi:10.1371/journal.pone.0010960.g006
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Wind cost analyses
One of the objectives for the current study was to evaluate

whether the longitudinal distribution of sooty shearwater foraging
effort in the Polar Front zone was related to patterns of oceanic
winds. There is little in our results to suggest that the region directly
south of New Zealand was sparsely utilized by the birds because of
wind cost factors. However, wind patterns do appear to explain
other broad-scale patterns in foraging, such as the lack of use of
near-Antarctic waters east of about 150uE by South Australian
short-tailed shearwaters. This use of wind on long foraging trips has
previously been noted [e.g. 53] but not formally investigated.

Both the sooty shearwaters and the Tasmanian short-tailed
shearwaters made long foraging trips to the south-east of their
colonies, into apparently energetically-costly areas. Shaffer et al.
[13] noted the bias of the sooty shearwaters toward the south-
eastern sector, and provided several possible explanations, including
potentially higher prey abundances in that zone. Our wind cost
analyses suggest two further factors. First, while such trips were
costly overall, the outward flight legs were generally accompanied
by favourable tail and hind-quarter winds. Long foraging trips are
generally initiated when the adults have poor body condition
[12,14] and so a foraging trip with minimal initial energy cost might
be preferable to one that has a lower total cost (i.e. when the return
leg also considered). Second, shearwaters breeding in south-eastern
Australia do not appear to forage in this zone, possibly because of
the high energy costs that they would incur in doing so. The
south-eastern zone might therefore represent an area of reduced
competition for the sooty shearwaters.

There are a number of potential concerns with the wind cost
analyses. Shearwaters generally fly close to the water, where wind
speeds will be lower than the estimates provided by the NCEP2
data (which are for winds at 10m above the ocean surface, where
shearwaters rarely fly). Flight close to the sea surface will reduce
the induced drag and therefore the energy cost of flight [82], but
perhaps more importantly, means that ocean waves become a
potentially important consideration. Shearwaters are known to use
wave troughs and wind gradients during flight [e.g. 83,84].
Dynamic flight techniques that exploit the interaction of winds and
waves, such as gust soaring [50,51], have the potential to
dramatically reduce the energy expenditure of seabirds in flight
over the open ocean. The cost function used here does not account
for such techniques. The decision not to incorporate these factors
into the wind cost analyses was in part a reflection of the lack of
fine-scale wind and wave data over the regions of interest (which
would be required to model dynamic flight costs), and also the
relatively coarse spatial and temporal resolution of the seabird
locations (particularly those from the geolocation tags, which
provide only one position fix per day and with relatively large
spatial uncertainty). The wind cost analyses must therefore be
interpreted in the context of relatively large-scale behaviours (of
the order of days, or hundreds of kilometres).

Further caution should be exercised in interpreting the insights
into adult foraging behaviour obtained from tagged birds, since it
is known that the handling of birds and presence of tags can
reduce colony attendance and provisioning of chicks by the adult
birds [43,85, but see also 86].

Figure 7. Shearwater foraging in the Polar Frontal zone, in relation to oceanographic processes and copepod abundances. A.
Longitudinal distributions in the Polar Frontal zone of water vertical velocity at 1095m depth (solid line, positive = upward) and water depth (dotted). B.
Mean summer surface chlorophyll-a from SeaWiFS satellite estimates. C. Near-surface copepod density from continuous plankton recorder surveys
(points = individual tow segments, black lines = mean6 SE fit by generalised additive model). D. Shearwater relative foraging effort within 3u of latitude
of the Polar Frontal zone (white = sooty shearwaters, black = South Australian short-tailed shearwaters, grey = Tasmanian short-tailed shearwaters).
doi:10.1371/journal.pone.0010960.g007
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Relationship with physical oceanography in the Polar
Front zone

The foraging effort of the shearwaters within the Polar Front zone
was not uniform in longitude, but was focused on areas of persistent
upwelling. The association of shearwater foraging activity with these
areas reflects elevated prey availability (as measured by near-surface
copepod abundances), resulting either from elevated production in
these areas, and/or the aggregation of prey in near-surface waters
by upwelling and convergence [e.g. 87].

The persistent upwellings in the Polar Front zone are largely
coincident with the surface productivity, as measured by satellite
estimates of surface chlorophyll (Figure 7; see also Figure 8 in
[54]). In the open ocean away from shallow regions, blooms along
Southern Ocean fronts are generally initiated by upwellings due to
the interactions of the Antarctic Circumpolar Current with large-
scale bottom topography [54]. A large and intense topography-
induced upwelling is found where the Polar Front interacts with
Pacific-Antarctic Ridge, from, 170uEÐ200uE, and this zone
corresponds to the strongest chlorophyll bloom found in the
Pacific sector of the Southern Ocean [54], and also to the sooty
shearwatersÕ foraging zone south-east of New Zealand. The
upwellings in the vicinity of the South-East Indian and Macquarie
Ridges (140uE and 165uE; also foraging zones) have relatively
weak signatures in surface chlorophyll distribution (Figure 7a).
However, in-situ observations along the World Ocean Circulation
Experiment SR3 section (140uE line) show a persistent subsurface
chlorophyll maximum at depths of 50Ð100m [88,89]. This
subsurface maximum does not extend northward into the
subantarctic zone. Parslow et al. [88] concluded that vertical
processes (rather than horizontal advection) were the dominant

controllers of this feature, consistent with the vertical velocity
distributions shown here (Figure 6).

Consistency and overlap of foraging areas
The overlap of foraging zones between the two shearwater

species, and with commercial fisheries, is an issue of ongoing
interest [2]. The Polar Front region around 140uE was utilised by
shearwaters from all three tracking studies incorporated here. The
range of years covered by those studies, combined with the
consistency of high at-sea densities in this region, strongly suggests
that this region is used repeatedly across years. This is also
consistent with previously published tracks of short-tailed shear-
waters from south-eastern Australia [53,78], and with land-based
observations of southward-, but not northward-flying shearwaters
at Macquarie Island [90]. The south-eastern sooty shearwater
foraging zone matches that recorded in 2000 (Figure 1 in [2]),
suggestive of inter-annual consistency in the use of other foraging
locations. The sooty shearwaters also showed foraging zone fidelity
at an individual level, with only one bird foraging in both the
south-eastern and south-western zones. Fidelity to mesoscale
features such as fronts and upwelling zones is extremely common
in pelagic seabirds [91]. Central-place foragers, such as breeding
seabirds, tend to repeatedly utilise foraging zones where prey are
consistent [92,93]. The strategy of returning to learned foraging
zones provides a means of counteracting the natural patchiness of
marine prey [94].

The lack of foraging activity by the sooty shearwaters in the
Polar Front zone sector from, 145uEÐ180uE does not appear to
be a result of wind-cost factors, but likely prey availability and
other factors. This sector encompasses a sector of persistent

Figure 8. Latitudinal distributions of pelagic trawl abundances and sooty shearwater diving activity. A. Pelagic prey abundances
(individuals/trawl) in the 60uS to 45uS latitude band, 0Ð500m depth, at approximately 140uE. B. Sooty shearwater relative dive distribution in the
135uEÐ145uE sector for the same latitude range. Dotted lines show the latitudes of the southern and northern branches of the Polar Front.
doi:10.1371/journal.pone.0010960.g008
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downwelling (, 148uEÐ162uE, Figure 6). While the sooty shear-
waters did not utilise the region around 165uE, this is a region of
upwelling and was utilised by the Tasmanian short-tailed
shearwaters. The lack of use of this particular area by the sooty
shearwaters might therefore reflect differences in preferred
(learned) foraging areas of the birds.

Tracking studies on other species have shown foraging
distributions in similar areas to the shearwaters. Southern elephant
sealsMirounga leonina from Macquarie Island, like the sooty
shearwaters, showed a bimodal south-east/south-west foraging
pattern (Figure 1b in [95]), although these seals foraged farther
south than did the sooty shearwaters. Grey-headed albatrosses
Thalassarche chrysostoma from Macquarie Island foraged just west of
the sooty shearwatersÕ south-western foraging zone, around 180uEÐ
190uE (Figure 5 in [96]), as did grey-headed and black-browed
T. melanophrys albatrosses from Campbell Island [97]. Light-mantled
sooty albatrossesPhoebetria palpebrata, also from Macquarie Island,
foraged just south of the south-western zone (approximately 130Ð
140uE, 64uS) [98]. King penguinsAptenodytes patagonicus from
Macquarie Island foraged east and south of the island [99],
including the Polar Front zone at, 165uE where the Tasmanian
short-tailed shearwaters foraged. Stomach samples from these
penguins consisted of fish (primarily the myctophidsK. anderssoni
andE. carlsbergi) and squid (Moroteuthis ingens andMastigoteuthis sp.).
M. ingens is a predator of myctophids, particularlyK. anderssoni [100].
The dives made by these penguins in the Polar Front zone were
similar in pattern to those of the sooty shearwaters reported here,
occurring from sunrise until mid-morning, and again from mid-
afternoon until sunset, with little dive activity around midday (B.
Wienecke, unpublished). The dive depths were also similar:
shallowest at sunrise and sunset, increasing in depth closer to mid-
day; consistent with the diurnal vertical migration of myctophids
and their predators. The penguinsÕ deepest dives (up to 170m) were
well beyond the maximum diving depths of shearwaters, suggesting
that such prey would be accessible to the shearwaters for a much
shorter period of each day. However, they can cover a much greater
distance over this shorter time period.

Upper-level trophic predators, including seabirds, are commonly
used as indicators for ecosystem monitoring [e.g. 101,102,103] and
fish stock assessment [e.g. 104]. Clearly, their value in this role is
determined by the extent to which variations in indices derived from
these predators reflect changes occurring at lower trophic levels of
the ecosystem [e.g. 105]. The use of sooty and short-tailed
shearwaters as indicators of Southern Ocean ecosystems is
compromised to some extent by their annual migrations and
corresponding exposure to factors external to the Southern Ocean
[e.g. 106,107]. However, our results suggest that during the breeding
season, these birds are consistent in their foraging habitats. The
foraging overlap between the two species, and between populations,
and the similarities in their foraging areas to those of other marine
predators, suggests that these birds might be useful as indicators of

aspects of the Southern Ocean ecosystem, particularly of the Polar
Front zone. Combining indices from multiple colonies and/or
different species might allow variations in breeding success due to
localised factors (e.g. density dependence, or predation from
introduced mammals) to be disentangled from those due to changes
in the ecosystem of the Polar Front zone. Combining indicator
information from populations at multiple sites, and from multiple
species, can assist in reducing single-site effects, and potentially make
indicators based on seabird breeding performance more robust
[108]. An index of the abundance of Australian krill (Nyctiphanes
australis) based on a combination of indices of the growth of short-
tailed shearwater chicks in Tasmania and mortality occurrences in
Japan has previously been proposed [109].

Summary and conclusions
Electronic tagging technologies can provide detailed insights

into the foraging and migratory behaviours of wide-ranging
marine predators. In this study we combined tracking data from
two shearwater species that originate from colonies separated by
thousands of kilometres in New Zealand and Australia, along with
ship-based and remote-sensed information to evaluate and
describe the predatorsÕ foraging behaviour within the wider
context of their marine ecosystem.

The birds displayed foraging site fidelities at individual and
population levels, with overlap in foraging habitat between species
and populations. Wind cost modelling yielded new information
about the putative mechanisms that influence foraging destination.
The distributions of foraging effort at broad spatial scales were
consistent with patterns in oceanic winds. Prey availability
modulated these patterns, and influenced foraging effort at smaller
spatial scales. The spatial distribution of shearwater foraging effort
in the Polar Front zone was matched by patterns in large-scale
upwelling, primary production, and abundances of copepods and
myctophid fish. These results offer great promise for modelling
and projecting possible changes in foraging behaviour and
distribution related to environmental factors.
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