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Abstract. We prove here an identity for cocycles associated with homogeneous spaces in the context of

locally compact groups. Mackey introduced cocycles (λ-functions) in his work on representation theory of
such groups. For a given locally compact group G and a closed subgroup H of G, with right coset space

G/H, a cocycle λ is a real-valued Borel function on G/H ×G satisfying the cocycle identity

λ(x, st) = λ(x.s, t)λ(x, s), a.e. x ∈ G/H, s, t ∈ G,
where the “almost everywhere” is with respect to a measure whose null sets pull back to Haar measure null

sets on G. Let H and K be regularly related closed subgroups of G. Our identity describes a relationship
between cocycles for G/Hx, G/Ky and G/(Hx ∩Ky) for almost all x, y ∈ G. This also leads to an identity

for modular functions of G and the corresponding subgroups.

1. Introduction and Statement of Results

The aim of this paper is to prove an identity for cocycles (Mackey’s λ functions). The need for this
identity arose in connection with problems on induced representations to be discussed in a later publication.
Let G be a separable locally compact group and H a closed subgroup of G. In his treatment of Induced
Representation on Locally Compact Groups ([4]), Mackey introduced the concept of a cocycle λ as a real
valued positive function on (G/H) × G satisfying certain identities (see sec.2.1). Most importantly, such
cocycles are associated with quasi-invariant measures; to each such cocycle there is a quasi-invariant measure
µ on G/H, so that the Radon-Nikodym derivative of the translated measure µ.s with respect to µ is λ(·, s)
for all s ∈ G. Once λ is specified, this measure is unique up to a positive scalar multiple. The basic properties
of these functions are well-established in the literature (cf. [1, 4, 5]).

To state our results, we will need some concepts and notations. Let λH denote a cocycle corresponding to
the homogeneous space G/H and let Hx = x−1Hx, for x ∈ G. Let ∆H be the modular function of the group
H. Closed subgroups H and K of G are said to be regularly related if the double coset space H\G/K is a
standard Borel space (cf.[4]). We note that the double coset space formed by the right action of the diagonal
subgroup Λ = {(x, x) : x ∈ G} of G×G on the coset space (H ×K)\(G×G) (that is, H ×K\G×G/Λ) is
identified with H\G/K by the map (x, y) 7→ xy−1. The regularly related property for H and K is equivalent
to this action being smooth ([4]).

Our main result provides a link between cocycles for conjugates of regularly related subgroups. We will
abuse notation and assume that the cocycle λH(s, t) is actually defined on G×G and constant on the right
cosets of H, rather than on (G/H)×G.

Theorem 1. Let G be a separable locally compact group and H,K closed subgroups of G. If H and K are
regularly related, then for each double coset D(x, y) = (H × K)(x, y)Λ, there is a quasi-invariant measure
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µx,y on G/(Hx ∩Ky), x, y ∈ G, and a corresponding cocycle λHx∩Ky such that

(1) λHx(ts−1, s)λKy (ts−1, s)λHx∩Ky (t, s−1) = 1, (s, t ∈ G, a.e.(x, y) ∈ (G×G)/(H ×K)).

Moreover, λHx∩Ky (t, s) is defined everywhere and continuous on (G/(Hx ∩Ky))×G.

Theorem 1 leads to an identity relating the modular functions corresponding to the subgroups involved:

Corollary 1. For (x, y) ∈ G×G such that (1) holds, and for s ∈ Hx ∩Ky,

∆Hx(s)∆Ky (s)

∆G(s)∆Hx∩Ky (s)
= 1.

A necessary and sufficient condition for the existence of an invariant measure on a quotient group G/H
of G is that ∆H(x) = ∆G(x) for all x ∈ H. We say that G ⊃ H is comodular if this happens. Now we have
the following straightforward consequence of Corollary 1.

Corollary 2. Let H and K be regularly related closed subgroups of a separable locally compact group G and
(x, y) ∈ G × G such that the identity (1) holds. If G ⊃ H is comodular, then K ⊃ (Hz ∩K) is comodular
for almost all z ∈ G.

2. Preliminaries on cocycles

To avoid measure theoretic complications, we assume throughout that G is a locally compact separable
group and H a closed subgroup. We denote the right-invariant Haar measure on G by νG, with e denoting
the identity of the group. The canonical mapping from G to the set of right-cosets G/H is denoted by pH .
Throughout this section, X denotes the set of right cosets G/H of H with the standard right action of G.
A left action by any other (closed) subgroup K of G gives rise to orbits in one-to-one correspondence with
the double cosets H\G/K, and the stabilizer of Hx ∈ X under the action of K is Hx ∩K.

We briefly list the key results on cocycles, quasi-invariant measures and related concepts from our per-
spective. The reader is referred to [1, 4, 5].

• There is a regular Borel section B ⊂ G; that is, a Borel set B that intersects each right G coset in
exactly one point such that (p−1

H (pH(K))) ∩B has a compact closure for each compact subset K of
G.

• A strictly positive, real-valued continuous function ρH exists on G satisfying

ρH(hx) = (∆H(h)/∆G(h))ρH(x), (x ∈ G, h ∈ H).

• Such a ρ-function gives rise to a unique Borel cocycle λρ on X ×G such that

λρ(pH(s), y) =
ρ(sy)

ρ(s)
, (s, y ∈ G)

with the properties:
(a) for all x ∈ X and s, t ∈ G, λρ(x, st) = λρ(x.s, t)λρ(x, s);
(b) for all h ∈ H,λρ(pH(e), h) = ∆H(h)/∆G(h);
(c) for t ∈ G, λρ(pH(e), t) is bounded on compact sets as a function of t; For x, t ∈ G and for almost

all v ∈ G/H, λHx(x−1v, t) = λH(v, t).
• For each ρ-function on G there is a quasi-invariant measure µ on X such that, for all y ∈ G,

the corresponding cocycle λρ has the property that λρ(·, y) is a Radon-Nikodym derivative of the
translation measure µ.y with respect to the measure µ.
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• For x ∈ G let ẋ = pH(x). If µ denotes the quasi-invariant measure corresponding to the function ρ
then∫
G

f(x)ρ(x)dνG(x) =

∫
X

∫
H

f(hx)dνH(h)dµ(
.
x), (f ∈ C00(G)).

where C00(G) denotes the continuous functions on G with compact support. We write µ � λ to mean that
for all y ∈ G, λ(·, y) is the cocycle that is the Radon-Nikodym derivative of the translate E 7→ µ([E]y) with
respect to µ. The following facts on λ and corresponding ρ-functions can be found in many places in the
literature (see, for example, [4, 1]).

There are quasi-invariant measures on X, any two of which are absolutely continuous. Null sets for such
measures are exactly those sets E for which p−1

H (E) has Haar measure zero. The relations µ � λ and λ = λρ
between quasi-invariant measures, cocycles, and ρ-functions have the following properties:

(i) Every cocycle is of the form λρ; λρ1 = λρ2 if and only if ρ1/ρ2 is a constant.
(ii) For every cocycle there is a quasi-invariant measure µ such that µ � λ; if µ1 � λ and µ2 � λ then µ1

is a constant multiple of µ2.
(iii) For every quasi-invariant measure µ there is a cocycle λ such that µ � λ. If µ � λ1 and µ � λ2 then,

for all t, λ1(·, t) = λ2(·, t) a.e.
(iv) If µ � λρ1 and µ � λρ2 then ρ1/ρ2 is constant almost everywhere.

3. Proofs of the Results

First we recall some standard results on disintegration of measures. Let X be a separable locally compact
space supporting a finite measure µ and let R be an equivalence relation on X where r(x) is the equivalence
class containing x. The relation R is measurable if there exists a countable family E1, E2, . . . of subsets of
X/R such that r−1(Ei) is measurable for each i and such that each point in X/R is the intersection of the
Ei containing it (cf. [4, 2]).

It is well known (see, for example, [4], p.124, Lemma 11.1) that the measure µ is decomposable as an
integral over X/R of measures µy concentrated on the equivalence classes.

If µ̃ is the “push-forward” measure on X/R from the measure µ on X, i.e. µ̃(E) = µ(r−1(E)), then for
each y in X/R there exists a finite Borel measure µy on X such that µy(X − r−1({y})) = 0 and

(2)

∫
f(y)

∫
g(x)dµy(x)dµ̃(y) =

∫
f(r(x))g(x)dµ(x),

whenever f ∈ L1(X/R, µ̃) and g is bounded and measurable on X. If µ is quasi-invariant then in the
disintegration of µ in (2) above, µy is also quasi-invariant under the action of G a.e. y ([4]).

Proof of Theorem 1.
It is clear that if H and K are regularly related then the orbits of G/H under the action of K outside

a set of measure zero form the equivalence classes of a measurable equivalence relation. The right action of
the diagonal subgroup Λ = {(x, x) : x ∈ G} of G × G on the coset space (G×G)/(H ×K) has stabilizer
Hx×Ky ∩Λ = (H×K)(x,y)∩Λ at (Hx,Ky), and the orbit of this point is the double coset (H×K)(x, y)Λ.
We write Υ for the set of all double cosets (H ×K)\G × G/Λ ' H\G/K. As noted earlier, the regularly
related property for H and K is equivalent to this orbit space being smooth ([4]). Writing D(x, y) for the
double coset to which (x, y) belongs, for a fixed finite measure ν0 on G×G equivalent to Haar measure, we
define a measure µ(H,K) on Υ by µ(H,K)(F ) = ν0(D−1(F )). Such a measure is called an admissible measure
by Mackey.
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Fix a finite product measure ν0 = ν1 × ν2 on (G×G) equivalent to Haar measure. Let µH×K be the
image of ν0 under pH×K and µH , µK the images of ν1, ν2 under pH and pK respectively. Let µH,K be an
admissible measure in Υ corresponding to ν0.

For a function f on (G/H) × (G/K) for which
∫
G/H

∫
G/K

f(x, y)dµH(x)dµK(y) is integrable, using the

change of variables x 7→ xs and y 7→ ys, we obtain∫
G/H

∫
G/K

f(x, y)dµH(x)dµK(y) =

∫
G/H

∫
G/K

λH(x, s)λK(y, s)f(xs, ys)dµH(x)dµK(y)

=

∫
(G×G)/(H×K)

λH(x, s)λK(y, s)f(xs, ys)dµH×K(x, y).

For (x, y) ∈ (G×G)/(H ×K), write r(x, y) = D(p−1
H×K(x, y)); this defines a measurable equivalence

relation since H and K are regularly related. The measure µH×K is disintegrated into an integral of measures
µx,y, where D(x, y) ∈ Υ, with respect to the measure µH,K on Υ. Also, each µx,y is a quasi-invariant measure
on the orbit r−1(D(x, y)) (cf. (2)). Using this disintegration, we have∫

(G×G)/(H×K)

λH(x, s)λK(y, s)f(xs, ys)dµH×K(x, y)

=

∫
D∈Υ

∫
t∈Λ/(H×K)(x,y)∩Λ

λH(xt, s)λK(yt, s)f(xts, yts)dµx,y(t)dµH,K(D),

where (x, y) is a coset representative of the coset D(x, y). Identifying the space Λ/((H ×K)
(x,y) ∩ Λ) with

G/(Hx ∩Ky), we can regard µx,y as a measure on G/(Hx ∩Ky). Then we have

(3)

∫
(G×G)/(H×K)

λH(x, s)λK(y, s)f(xs, ys)dµH×K(x, y)

=

∫
D∈Υ

∫
t∈G/(Hx∩Ky)

λH(xt, s)λK(yt, s)f(xts, yts)dµx,y(t)dµH,K(D).

Changing variables t 7→ ts−1 in the integral on the right-hand side, we find that

(4)

∫
(G×G)/(H×K)

λH(x, s)λK(y, s)f(xs, ys)dµH×K(x, y)

=

∫
D∈Υ

∫
t∈G/(Hx∩Ky)

λH(xts−1, s)λK(yts−1, s)f(xt, yt)λHx∩Ky (t, s−1)dµx,y(t)dµH,K(D).

On the other hand, if we start with
∫

(G×G)/(H×K)
f(x, y)dµH×K(x, y) and use disintegration, we have

(5)

∫ ∫
(G×G)/(H×K)

f(x, y)dµH×K(x, y)

=

∫
D∈Υ

∫
t∈Λ/(H×K)(x,y)∩Λ

f(xt, yt)dµx,y(t, t)dµ(H,K)(D)

=

∫
D∈Υ

∫
t∈G/(Hx∩Ky)

f(xt, yt)dµx,y(t)dµ(H,K)(D).

Now (4) and (5) yield

(6) λH(xts−1, s)λK(yts−1, s)λHx∩Ky (t, s−1) = 1, (s ∈ G, a.e. t ∈ G/(Hx ∩Ky));

or, using the cocycle property (c) in Sec.2,
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(1) λHx(ts−1, s)λKy (ts−1, s)λHx∩Ky (t, s−1) = 1, (s ∈ G, a.e. t ∈ G/(Hx ∩Ky))
for almost all (x, y) ∈ (G×G)/(H ×K). Fixing such an (x, y) in (G×G)/(H ×K), and invoking continuity
of λH and λK , we see that (1) is true for all t ∈ G/(Hx ∩Ky). Furthermore, (1) implies that λHx∩Ky (t, s)
is defined everywhere and continuous on (G/(Hx ∩Ky))×G.

Proof of Corollary 1. Setting t = s in (1) and using the property (a) of cocycles in Sec. 2.1, we obtain

(7) λHx(e, s)λKy (e, s) = λHx∩Ky (e, s).

Now we use the property (b) of cocycles in Sec 2.1 to obtain

(8)
∆Hx(s)

∆G(s)

∆Ky (s)

∆G(s)
=

∆Hx∩Ky (s)

∆G(s)

This leads to the required equality

(9)
∆Hx(s)

∆G(s)

∆Ky (s)

∆Hx∩Ky (s)
= 1.

Remarks:

• We emphasise that the result is an almost everywhere statement on the product space G/H ×G/K.
If H = K, the diagonal {(x, x) : x ∈ G/H} will normally have zero measure. Indeed, if it has
non-zero measure, so that our results allow us to make statements about the comodularity of
G ⊃ Hx = Hx ∩ Hx, the quotient space G/H is discrete, and so H is an open subgroup. In that
case, it is already well-known (and trivial) that ∆G(h) = ∆Hx(h) for all h ∈ Hx and all x.

• If we consider the special case where K = e, we have Ky = e for all y ∈ G, giving s = e. The
conclusion from Corollary 1 in this case is trivial.

• If H is a normal subgroup of G, then Hx = H for all x ∈ G and we have ∆H(s) = ∆G(s) in
consequence of the normality. Here, with an application of Fubini’s Theorem (cf.[3], p.153), Corollary
1 becomes

∆Hx∩Ky (s) = ∆Ky (s), for s ∈ H ∩Ky.

But this is a fact anyway, since H ∩Ky is normal in Ky.

Proof of Corollary 2. If G ⊃ H is comodular, then so is G ⊃ Hx for all x ∈ G. An application of
Corollary 1 implies that Hx ⊃ Hx ∩Ky is comodular for almost all x and y. By conjugating with y−1 and
using Fubini’s Theorem, it then follows by conjugation, that K ⊃ Hz ∩K is comodular for almost all z ∈ G.
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