eCite Digital Repository

Lanthanide-containing polymer microspheres by multiple-stage dispersion polymerization for highly multiplexed bioassays

Citation

Abdelrahman, AI and Dai, S and Thickett, SC and Ornatsky, O and Bandura, D and Baranov, V and Winnik, MA, Lanthanide-containing polymer microspheres by multiple-stage dispersion polymerization for highly multiplexed bioassays, Journal of the American Chemical Society, 131, (42) pp. 15276-15283. ISSN 0002-7863 (2009) [Refereed Article]

Copyright Statement

Copyright 2009 American Chemical Society

DOI: doi:10.1021/ja9052009

Abstract

We describe the synthesis and characterization of metal-encoded polystyrene microspheres by multiple-stage dispersion polymerization with diameters on the order of 2 μm and a very narrow size distribution. Different lanthanides were loaded into these microspheres through the addition of a mixture of lanthanide salts (LnCl3) and excess acrylic acid (AA) or acetoacetylethyl methacrylate (AAEM) dissolved in ethanol to the reaction after about 10% conversion of styrene, that is, well after the particle nucleation stage was complete. Individual microspheres contain ca. 106−108 chelated lanthanide ions, of either a single element or a mixture of elements. These microspheres were characterized one-by-one utilizing a novel mass cytometer with an inductively coupled plasma (ICP) ionization source and time-of-flight (TOF) mass spectrometry detection. Microspheres containing a range of different metals at different levels of concentration were synthesized to meet the requirements of binary encoding and enumeration encoding protocols. With four different metals at five levels of concentration, we could achieve a variability of 624, and the strategy we report should allow one to obtain much larger variability. To demonstrate the usefulness of element-encoded beads for highly multiplexed immunoassays, we carried out a proof-of-principle model bioassay involving conjugation of mouse IgG to the surface of La and Tm containing particles and its detection by an antimouse IgG bearing a metal-chelating polymer with Pr.

Item Details

Item Type:Refereed Article
Research Division:Chemical Sciences
Research Group:Analytical Chemistry
Research Field:Analytical Spectrometry
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Chemical Sciences
Author:Thickett, SC (Dr Stuart Thickett)
ID Code:99322
Year Published:2009
Web of Science® Times Cited:49
Deposited By:Chemistry
Deposited On:2015-03-19
Last Modified:2015-04-14
Downloads:0

Repository Staff Only: item control page