University of Tasmania
Browse

File(s) under permanent embargo

Computational mechanistic study of palladium(II)-catalyzed carboxyalkynylation of an olefin using an iodine(III) oxidant reagent

journal contribution
posted on 2023-05-18, 07:58 authored by Alireza AriafardAlireza Ariafard
The Pd(II)-catalyzed chemical transformations using an iodine(III) oxidant are mostly believed to proceed via a Pd(IV)/Pd(II) catalytic cycle. The present computational study, however, demonstrates that this statement is not always true, and, in some particular cases, an alternative mechanism could be operative. Herein, the reaction mechanism of the Pd(II)-catalyzed carboxyalkynylation of an olefin using an alkynyl benziodoxolone reagent was elucidated with the aid of density functional theory calculations. The catalytic reaction was found to proceed via a mechanism in which a Pd(II) vinylidene-like complex, not a Pd(IV) complex, plays a leading role. The mechanistic understanding of the carboxyalkynylation reaction may have significant implications in a variety of processes catalyzed by transition metal complexes in the presence of alkynyl benziodoxolones.

History

Publication title

Organometallics

Volume

33

Issue

24

Pagination

7318-7324

ISSN

0276-7333

Department/School

School of Natural Sciences

Publisher

Amer Chemical Soc

Place of publication

1155 16Th St, Nw, Washington, USA, Dc, 20036

Rights statement

Copyright 2014 American Chemical Society

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC