University of Tasmania
Browse

File(s) under permanent embargo

Comparative study of cytotoxicity of detonation nanodiamond particles with an osteosarcoma cell line and primary mesenchymal stem cells

journal contribution
posted on 2023-05-18, 07:41 authored by Keremidarska, M, Ganeva, A, Mitev, D, Hikov, T, Presker, R, Pramatarova, L, Krasteva, N

Recently, nanodiamonds (NDs) have attracted great interest due to their unique physical and chemical properties that could be used in various biological applications. However, depending on the origin, NDs often contain different impurities which may affect cellular functions and viability. Therefore, before their biomedical application, the cytotoxicity of newly produced NDs should be assessed.

In the present study, we have evaluated cytotoxicity of four types of ND particles with two cell models: a human osteosarcoma cell line, MG-63, and primary rat mesenchymal stem cells (rMSCs). Detonation-generated nanodiamond (DND) particles were purified with different acid oxidizers and impurities’ content was determined by elemental analysis. The particles size distribution was measured revealing that the DND particles have an average size in the range of 51–233 nm. Cytotoxicity was assessed by optical microscopy and proliferation assay after 72 hours exposure of the cells to nanoparticles. We observed cell-specific and material-specific toxicity for all tested particles. Primary stem cells demonstrated higher sensitivity to DND particles than osteosarcoma cells. The most toxic were the DND particles with the smallest grain size and slight content of non-diamond carbon, while DNDs with higher grain size and free from impurities had no significant influence on cell proliferation and morphology. In addition, the smaller DND particles were found to form large aggregates mainly during incubation with rMSCs. These results demonstrate the role of the purification method on the properties of DND particles and their cytotoxicity as well as the importance of cell types used for evaluation of the nanomaterials.

History

Publication title

Biotechnology and Biotechnological Equipment

Volume

28

Issue

4

Pagination

733-739

ISSN

1310-2818

Department/School

School of Natural Sciences

Publisher

Taylor and Francis

Place of publication

United Kingdom

Rights statement

Copyright 2014 The Author(s)

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC