eCite Digital Repository
Iron biogeochemistry in Antarctic pack ice during SIPEX-2
Citation
Lannuzel, D and Chever, F and van der Merwe, PC and Janssens, JP and Roukaerts, A and Cavagna, A-J and Townsend, AT and Bowie, AR and Meiners, KM, Iron biogeochemistry in Antarctic pack ice during SIPEX-2, Deep-Sea Research II, 131 pp. 111-122. ISSN 0967-0645 (2016) [Refereed Article]
![]() | PDF 6Mb |
Copyright Statement
Copyright 2014 The Authors. Licensed under Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) https://creativecommons.org/licenses/by-nc-nd/3.0/
DOI: doi:10.1016/j.dsr2.2014.12.003
Abstract
Our study quantified the spatial and temporal distribution of Fe and ancillary biogeochemical parameters at six stations visited during an interdisciplinary Australian Antarctic marine science voyage (SIPEX-2) within the East Antarctic first-year pack ice zone during September–October 2012. Unlike previous studies in the area, the sea ice Chlorophyll a, Particulate Organic Carbon and Nitrogen (POC and PON) maxima did not occur at the ice/water interface because of the snow loading and dynamic processes under which the sea ice formed. Iron in sea ice ranged from 0.9 to 17.4 nM for the dissolved (<0.2 µm) fraction and 0.04 to 990 nM for the particulate (>0.2 µm) fraction. Our results highlight that the concentration of particulate Fe in sea ice was highest when approaching the continent. The high POC concentration and high particulate iron to aluminium ratio in sea ice samples demonstrate that 71% of the particulate Fe was biogenic in composition. Our estimated Fe flux from melting pack ice to East Antarctic surface waters over a 30 day melting period was 0.2 µmol/m2/d of DFe, 2.7 µmol/m2/d of biogenic PFe and 1.3 µmol/m2/d of lithogenic PFe. These estimates suggest that the fertilization potential of the particulate fraction of Fe may have been previously underestimated due to the assumption that it is primarily lithogenic in composition. Our new measurements and calculated fluxes indicate that a large fraction of the total Fe pool within sea ice may be bioavailable and therefore, effective in promoting primary productivity in the marginal ice zone.
Item Details
Item Type: | Refereed Article |
---|---|
Keywords: | iron, biogeochemistry, Antarctic pack ice, sea ice, Antarctica, Southern Ocean, primary production |
Research Division: | Earth Sciences |
Research Group: | Oceanography |
Research Field: | Chemical oceanography |
Objective Division: | Environmental Management |
Objective Group: | Marine systems and management |
Objective Field: | Measurement and assessment of marine water quality and condition |
UTAS Author: | Lannuzel, D (Associate Professor Delphine Lannuzel) |
UTAS Author: | van der Merwe, PC (Dr Pier van der Merwe) |
UTAS Author: | Janssens, JP (Miss Julie Janssens) |
UTAS Author: | Townsend, AT (Associate Professor Ashley Townsend) |
UTAS Author: | Bowie, AR (Professor Andrew Bowie) |
UTAS Author: | Meiners, KM (Dr Klaus Meiners) |
ID Code: | 98187 |
Year Published: | 2016 |
Web of Science® Times Cited: | 26 |
Deposited By: | Oceans and Cryosphere |
Deposited On: | 2015-02-04 |
Last Modified: | 2017-11-17 |
Downloads: | 202 View Download Statistics |
Repository Staff Only: item control page