eCite Digital Repository

Delayed star formation in isolated dwarf galaxies: Hubble Space Telescope star formation history of the Aquarius dwarf irregular

Citation

Cole, AA and Weisz, DR and Dolphin, AE and Skillman, ED and McConnachie, AW and Brooks, AM and Leaman, R, Delayed star formation in isolated dwarf galaxies: Hubble Space Telescope star formation history of the Aquarius dwarf irregular, The Astrophysical Journal, 795, (1) Article 54. ISSN 0004-637X (2014) [Refereed Article]


Preview
PDF
Restricted - Request a copy
2Mb
  

Copyright Statement

Copyright 2014 The American Astronomical Society

DOI: doi:10.1088/0004-637X/795/1/54

Abstract

We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color–magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈ 10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈ 10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈ 6–8 Gyr ago (z ≈ 0.7–1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar MHi/M, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

Item Details

Item Type:Refereed Article
Keywords:local group, galaxy formation, galaxy evolution, galaxies: specific: DDO210
Research Division:Physical Sciences
Research Group:Astronomical and Space Sciences
Research Field:Cosmology and Extragalactic Astronomy
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Physical Sciences
Author:Cole, AA (Dr Andrew Cole)
ID Code:98095
Year Published:2014
Web of Science® Times Cited:20
Deposited By:Mathematics and Physics
Deposited On:2015-02-02
Last Modified:2017-11-06
Downloads:2 View Download Statistics

Repository Staff Only: item control page