University of Tasmania
Browse

File(s) under permanent embargo

A user’s guide to channelrhodopsin variants: features, limitations and future developments

journal contribution
posted on 2023-05-22, 23:43 authored by John LinJohn Lin
Channelrhodopsins (ChRs) are light-activated channels from algae that provide these organisms with fast sensors to visible light for phototaxis. Since its discovery, channelrhodopsin-2 (ChR2) has been used as a research tool to depolarize membranes of excitable cells with light. Subsequent chimeragenesis, mutagenesis and bioinformatic approaches have introduced additional ChR variants, such as channelrhodopsin-2 with H134R mutation (ChR2/H134R), channelrhodopsin- 2 with E123T mutation (ChETA), Volvox carteri channelrhodopsin-1 (VChR1), Volvox carteri channelrhodopsin-2 (VChR2), channelrhodopsin-2 with C128 or D156A mutations (ChR2/C128X/D156A), chimera D (ChD), chimera EF (ChEF) and chimera EF with I170V mutation (I170V). Each of these ChR variuants has unique features and limitations, but there are few resources summarizing and comparing these ChRs in a systematic manner. In this review, the seven following key properties of ChRs that have significant influences on their effectiveness as research tools are examined: conductance, selectivity, kinetics, desensitization, light sensitivity, spectral response and membrane trafficking. Using this information, valuable qualities and deficits of each ChR variant are summarized. Optimal uses and potential future improvements of ChRs as optogenetic tools are also discussed.

History

Publication title

Experimental Physiology

Volume

96

Pagination

19-25

ISSN

0958-0670

Department/School

Tasmanian School of Medicine

Publisher

Cambridge Univ Press

Place of publication

40 West 20Th St, New York, USA, Ny, 10011-4211

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC