University of Tasmania
Browse

File(s) under permanent embargo

Extracellular organic carbon dynamics during a bottom-ice algal bloom (Antarctica)

journal contribution
posted on 2023-05-18, 05:39 authored by Sarah UgaldeSarah Ugalde, Martin, A, Klaus MeinersKlaus Meiners, Andrew McMinnAndrew McMinn, Ryan, KG
Antarctic fast ice provides a habitat for diverse microbial communities, the biomass of which is mostly dominated by diatoms capable of growing to high standing stocks, particularly at the ice-water interface. While it is known that ice algae exude organic carbon in ecologically significant quantities, the mechanisms behind its distribution and composition are not well understood. This study investigated extracellular organic carbon dynamics, microbial characteristics, and ice algal photophysiology during a bottom-ice algal bloom at McMurdo Sound, Antarctica. Over a 2 wk period (November to December 2011), ice within 15 cm from the ice-water interface was collected and sliced into 9 discrete sections. Over the observational period, the total concentrations of extracellular organic carbon components (dissolved organic carbon [DOC] and total carbohydrates [TCHO]—the  sum of monosaccharides [CHOMono] and polysaccharides [CHOPoly]) increased, and were positively correlated with algal biomass. However, when normalised to chlorophyll a, the proportion of extracellular organic carbon components substantially decreased from initial measurements. Concentrations of DOC generally consisted of <20% TCHO, typically dominated by CHOMono, which decreased from initial measurements. This change was coincident with improved algal photophysiology (maximum quantum yield) and an increase in sea-ice brine volume fraction, indicating an increased capacity for fluid transport between the brine channel matrix and the underlying sea water. Our study supports the suggestion that microbial exudation of organic carbon within the sea-ice habitat is associated with vertical and temporal changes in brine physicochemistry.

Funding

Department of Environment and Energy (Cwth)

History

Publication title

Aquatic Microbial Ecology

Volume

73

Pagination

195-210

ISSN

0948-3055

Department/School

Institute for Marine and Antarctic Studies

Publisher

Inter-Research

Place of publication

Nordbunte 23, Oldendorf Luhe, Germany, D-21385

Rights statement

Copyright 2014 Inter-Research

Repository Status

  • Restricted

Socio-economic Objectives

Biodiversity in Antarctic and Southern Ocean environments

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC