University of Tasmania
Browse

File(s) under permanent embargo

Primary magmas and mantle temperatures

journal contribution
posted on 2023-05-18, 05:15 authored by Green, DH, Trevor FalloonTrevor Falloon, Eggins, SM, Yaxley, GM
The composition of olivine phenocrysts in Hawaiian tholeiitic picrites and in Mid-Ocean Ridge picrites vary up to Mg#91.3 and Mg#92.1 respectively. The compositions and liquidus temperatures of the magmas crystallizing the most magnesian phenocrysts can be estimated and we find that anhydrous liquidus temperatures (at 1 bar pressure) of Hawaiian tholeiitic picrites average 1365°C, for E-MOR picrites average 1355°C, and for N-MOR picrites average 1335°C. Water contents of the magmas decrease in the order Hawaiian picrites, E-MOR picrites to N-MOR picrites, and consideration of liquidus depression by these water contents leads to the conclusion that magma temperatures for all types were approximately 1325°C at ~ 1 bar. The data from parental or primary magmas suggests that the temperature contrast between 'Hot-Spot' and MOR magmas is ≤ 20°C. Application of information from partial melting studies of lherzolites and liquidus studies of the Hot-Spot and MOR picrites leads to the conclusion that both 'Hot-Spot' and MOR primary basalts are derived from mantle with potential temperature Tp ~ 1430°C. Insofar as primitive magmas may be used to infer the potential temperature of their sources, there is no evidence for a temperature contrast of Δ Tp = 100-250°C between 'Hot-Spot' or 'Deep Mantle Plume' sources and ambient (MOR source) asthenospheric mantle. Although magma temperatures are similar, the residual mantle compositions for Hawaiian picrites are refractory harzburgites, more refractory (including Cr/Cr+Al ratio) than the lherzolite to harzburgite residue from MOR picrite extraction. It is argued that the buoyancy plume and geophysically anomalous mantle beneath the Hawaiian Arch is due to compositional and not temperature contrasts in the upper mantle. The four-component mixing identified in the Hawaiian source is attributed to interaction between old subducted lithospheric slabs, buoyant or suspended in the upper mantle, and surrounding ambient mantle at Tp = 1430°C.

History

Publication title

European Journal of Mineralogy

Volume

13

Pagination

437-451

ISSN

0935-1221

Department/School

School of Natural Sciences

Publisher

E Schweizerbartsche Verlags

Place of publication

Naegele U Obermiller Johannesstrasse 3A, Stuttgart, Germany, D 70176

Rights statement

Copyright 2001 E. Schweizerbart’sche Verlagsbuchhandlung.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC