University of Tasmania
Browse
grl51872.pdf (972.95 kB)

The influence of the large-scale atmospheric circulation on Antarctic sea ice during ice advance and retreat seasons

Download (972.95 kB)
journal contribution
posted on 2023-05-18, 04:41 authored by Raphael, MN, William HobbsWilliam Hobbs
Antarctic sea ice, a key component of the Southern Hemisphere climate system, is influenced by several large-scale modes of the atmospheric circulation. Antarctic sea ice variability is spatially heterogeneous, and links between the atmospheric circulation modes and the sea ice variability are unclear. Using the observed sea ice concentration data, this research isolates distinct regions of sea ice variability around Antarctica and determines the advance and retreat periods for each of them. The latter are then statistically linked with the observed geopotential height data to determine the atmospheric circulation pattern associated with the variability in the sea ice for each period and region. The results clarify which circulation mechanism is of primary importance to sea ice variability during critical periods of the ice lifecycle in the different regions around Antarctica and have potential for making estimates of past sea ice extent using the observed geopotential height data.

History

Publication title

Geophysical Research Letters

Volume

41

Issue

14

Pagination

5037-5045

ISSN

0094-8276

Department/School

Institute for Marine and Antarctic Studies

Publisher

Amer Geophysical Union

Place of publication

2000 Florida Ave Nw, Washington, USA, Dc, 20009

Rights statement

Copyright 2014 American Geophysical Union. All Rights Reserved

Repository Status

  • Open

Socio-economic Objectives

Effects of climate change on Antarctic and sub-Antarctic environments (excl. social impacts)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC