University of Tasmania
Browse

File(s) under permanent embargo

The number of days on which increment occurs is the primary determinant of annual ring width in Callitris intratropica

journal contribution
posted on 2023-05-18, 04:33 authored by Drew, DM, Richards, AE, Cook, GD, Downes, G, Warwick GillWarwick Gill, Baker, PJ
Dendroclimatology of tropical tree species is an important tool for understanding past climatic variability at low latitudes where long-term weather records are often absent. Despite the growing number of published tropical tree-ring chronologies, however, still little is known of the factors that control annual ring formation in tropical tree species. In this paper we used an endemic Australian conifer, Callitris intratropica, to study the intra-annual dynamics of seasonal growth and xylem formation, and the effects of environmental conditions and competition, on growth ring formation. We combined high-resolution growth and climate monitoring (every 15 min for 2 years) with less frequent cambial sampling. Trees exhibited marked reductions in growth during certain periods within the rainy season when rainfall was not as regular and VPD was high. Overall, we found that ring width was most influenced by the number of days when increment occurred; regardless of how early the growing season began or ended, and by the rates of tracheid production. The effect of competition was also important. Trees growing in dense groves had narrower annual rings (4.6 mm) than trees that were growing in the open (6.7 mm), due to less active cambia, slower rates of xylem production and expansion and more increment days, although the overall growing season duration was also shorter in grove trees.

History

Publication title

Trees

Volume

28

Pagination

31-40

ISSN

0931-1890

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Springer-Verlag

Place of publication

175 Fifth Ave, New York, USA, Ny, 10010

Rights statement

Copyright 2014 Springer

Repository Status

  • Restricted

Socio-economic Objectives

Forestry not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC