University of Tasmania
Browse

File(s) under permanent embargo

Hydrodynamic and energetic properties of a finite array of fixed oscillating watercolumn wave energy converters

journal contribution
posted on 2023-05-18, 03:31 authored by Jean-Roch NaderJean-Roch Nader, Zhu, S-P, Cooper, P
Farms of wave energy convertors are more likely to be deployed than widely separated individual devices so as to harness maximum available power and to facilitate installation and electrical power transmission. In this paper, the theory of the interaction between oscillating systems, developed by Falnes and McIver (1985), is for the first time applied and extended to an explicit study of the dynamic and energetic performance of a finite array of fixed OWC devices. The interactions between devices and air compressibility are taken into account. Following the method, a FEM model is applied to the study of a single OWC device and three different array configurations. It is demonstrated that the inner properties and the interaction between OWC devices are strongly dependent on the position of the devices in the array and should be taken into account when determining the optimum device parameters so as to increase the maximum power extraction of the system or the overall frequency power-capture bandwidth

History

Publication title

Ocean Engineering: An International Journal of Research and Development

Volume

88

Pagination

131-148

ISSN

0029-8018

Department/School

Australian Maritime College

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1Gb

Rights statement

Copyright 2014 Elsevier Ltd.

Repository Status

  • Restricted

Socio-economic Objectives

Wave energy

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC