University of Tasmania
Browse

File(s) under permanent embargo

The importance of chain length for the polyphosphate enhancement of acidic potassium permanganate chemiluminescence

journal contribution
posted on 2023-05-18, 03:23 authored by Holland, BJ, Adcock, JL, Nesterenko, PN, Peristyy, A, Stevenson, PG, Barnett, NW, Conlan, XA, Francis, PS
Sodium polyphosphate is commonly used to enhance chemiluminescence reactions with acidic potassium permanganate through a dual enhancement mechanism, but commercially available polyphosphates vary greatly in composition. We have examined the influence of polyphosphate composition and concentration on both the dual enhancement mechanism of chemiluminescence intensity and the stability of the reagent under analytically useful conditions. The average chain length (n) provides a convenient characterisation, but materials with similar values can exhibit markedly different distributions of phosphate oligomers. There is a minimum polyphosphate chain length (∼6) required for a large enhancement of the emission intensity, but no further advantage was obtained using polyphosphate materials with much longer average chain lengths. Providing there is a sufficient average chain length, the optimum concentration of polyphosphate is dependent on the analyte and in some cases, may be lower than the quantities previously used in routine detection. However, the concentration of polyphosphate should not be lowered in permanganate reagents that have been partially reduced to form high concentrations of the key manganese(III) co-reactant, as this intermediate needs to be stabilised to prevent formation of insoluble manganese(IV).

History

Publication title

Analytica Chimica Acta

Volume

842

Pagination

35-41

ISSN

0003-2670

Department/School

School of Natural Sciences

Publisher

Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

Copyright 2014 Elsevier

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC