University of Tasmania
Browse

File(s) under permanent embargo

Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots

journal contribution
posted on 2023-05-18, 01:59 authored by Igor Pottosin, Velarde-Buendia, AM, Bose, J, Fuglsang, AT, Sergey ShabalaSergey Shabala
Polyamines regulate a variety of cation and K+ channels, but their potential effects on cation-transporting ATPases are underexplored. In this work, noninvasive microelectrode ion flux estimation and conventional microelectrode techniques were applied to study the effects of polyamines on Ca2+ and H+ transport and membrane potential in pea roots. Externally applied spermine or putrescine (1mM) equally activated eosin yellow (EY)-sensitive Ca2+ pumping across the root epidermis and caused net H+ influx or efflux. Proton influx induced by spermine was suppressed by EY, supporting the mechanism in which Ca2+ pump imports 2 H+ per each exported Ca2+. Suppression of the Ca2+ pump by EY diminished putrescine-induced net H+ efflux instead of increasing it. Thus, activities of Ca2+ and H+ pumps were coupled, likely due to the H+-pump inhibition by intracellular Ca2+. Additionally, spermine but not putrescine caused a direct inhibition of H+ pumping in isolated plasma membrane vesicles. Spermine, spermidine, and putrescine (1mM) induced membrane depolarization by 70, 50, and 35 mV, respectively. Spermine-induced depolarization was abolished by cation transport blocker Gd3+, was insensitive to anion channels’ blocker niflumate, and was dependent on external Ca2+. Further analysis showed that uptake of polyamines but not polyamine-induced cationic (K++Ca2++H+) fluxes were a main cause of membrane depolarization. Polyamine increase is a common component of plant stress responses. Activation of Ca2+ efflux by polyamines and contrasting effects of polyamines on net H+ fluxes and membrane potential can contribute to Ca2+ signalling and modulate a variety of transport processes across the plasma membrane under stress.

History

Publication title

Journal of Experimental Botany

Volume

65

Issue

9

Pagination

2463-2472

ISSN

0022-0957

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Oxford Univ Press

Place of publication

Great Clarendon St, Oxford, England, Ox2 6Dp

Rights statement

Copyright 2014 The Author

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC