eCite Digital Repository

Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley

Citation

Bose, J and Shabala, L and Pottosin, I and Zeng, F and Velarde-Buendia, A-M and Massart, A and Poschenrieder, C and Hariadi, Y and Shabala, S, Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley, Plant, Cell and Environment, 37, (3) pp. 589-600. ISSN 0140-7791 (2014) [Refereed Article]

Copyright Statement

Copyright 2013 John Wiley

DOI: doi:10.1111/pce.12180

Abstract

Salt sensitive (pea) and salt tolerant (barley) species were used to understand the physiological basis of differential salinity tolerance in crops. Pea plants were much more efficient in restoring otherwise depolarized membrane potential thereby effectively decreasing K+ efflux through depolarization-activated outward rectifying potassium channels. At the same time, pea root apex was 10-fold more sensitive to physiologically relevant H2O2 concentration and accumulated larger amounts of H2O2 under saline conditions. This resulted in a rapid loss of cell viability in the pea root apex. Barley plants rapidly loaded Na+ into the xylem; this increase was only transient, and xylem and leaf Na+ concentration remained at a steady level for weeks. On the contrary, pea plants restricted xylem Na+ loading during the first few days of treatment but failed to prevent shoot Na+ elevation in the long term. It is concluded that superior salinity tolerance of barley plants compared with pea is conferred by at least three different mechanisms: (1) efficient control of xylem Na+ loading; (2) efficient control of H2O2 accumulation and reduced sensitivity of non-selective cation channels to H2O2 in the root apex; and (3) higher energy saving efficiency, with less ATP spent to maintain membrane potential under saline conditions.

Item Details

Item Type:Refereed Article
Keywords:salinity, membrane potential, xylem, potassium, sodium, ion channels, membrane depolarization, potassium homeostasis
Research Division:Biological Sciences
Research Group:Plant Biology
Research Field:Plant Physiology
Objective Division:Plant Production and Plant Primary Products
Objective Group:Winter Grains and Oilseeds
Objective Field:Barley
Author:Bose, J (Dr Jayakumar Bose)
Author:Shabala, L (Dr Lana Shabala)
Author:Pottosin, I (Professor Igor Pottosin)
Author:Zeng, F (Dr Fanrong Zeng)
Author:Hariadi, Y (Mr Yuda Hariadi)
Author:Shabala, S (Professor Sergey Shabala)
ID Code:93058
Year Published:2014
Web of Science® Times Cited:44
Deposited By:Tasmanian Institute of Agriculture
Deposited On:2014-07-09
Last Modified:2017-11-02
Downloads:0

Repository Staff Only: item control page