University of Tasmania
Browse

File(s) under permanent embargo

Formation and properties of hydrosilicate liquids in the systems Na2O-Al2O3-SiO2-H2O and granite-Na2O-SiO2-H2O at 600°C and 1.5 kbar

journal contribution
posted on 2023-05-18, 01:57 authored by Thomas, VG, Smirnov, SZ, Kozmenko, OA, Drebushchak, VA, Vadim Kamenetsky
In order to determine the mechanisms of formation and properties of natural hydrosilicate liquids (HSLs), which are formed during the transition from magmatic to hydrothermal mineral formation in granitic pegmatites and rare-metal granites, the formation of HSLs was experimentally studied in the Na2O-SiO2-H2O, Na2O-Al2O3-SiO2-H2O, and Na2O-K2O-Li2O-Al2O3-SiO2-H2O systems at 600°C and 1.5 kbar. It was shown that the sequential extension of composition does not suppress HSL formation in the systems and expands the stability field of this phase. However, HSLs formed in extended chemical systems have different structure and properties: the addition of alumina induces some compression of the structure of the silicate framework of HSLs, which results in a decrease in water content in this phase and probably hinders the reversibility of its dehydration. It was demonstrated that HSL can be formed by the coagulation of silica present in a silica-oversaturated alkaline aqueous fluid. It was supposed that the HSL formed during this process has a finely dispersed structure. It was argued that anomalous enrichment in some elements in natural HSLs can be due to their sorption by the extensively developed surface of HSL at the moment of its formation.

History

Publication title

Petrology

Volume

22

Pagination

293-309

ISSN

0869-5911

Department/School

School of Natural Sciences

Publisher

Interperiodica

Place of publication

Po Box 1831, Birmingham, USA, Al, 35201-1831

Rights statement

Copyright 2014 Pleiades Publishing

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC