eCite Digital Repository

A simple strategy to maintain diversity and reduce crowding in particle swarm optimization


Chen, S and Montgomery, J, A simple strategy to maintain diversity and reduce crowding in particle swarm optimization, AI 2011: Advances in Artificial Intelligence, 5-8 December 2011, Perth, Australia, pp. 281-290. ISBN 978-3-642-25831-2 (2011) [Refereed Conference Paper]

Copyright Statement

Copyright 2011 Springer

DOI: doi:10.1007/978-3-642-25832-9_29


Each particle in a swarm maintains its current position and its personal best position. It is useful to think of these personal best positions as a population of attractors updates to current positions are based on attractions to these personal best positions. If the population of attractors has high diversity, it will encourage a broad exploration of the search space with particles being drawn in many different directions. However, the population of attractors can converge quickly attractors can draw other particles towards them, and these particles can update their own personal bests to be near the first attractor. This convergence of attractors can be reduced by having a particle update the attractor it has approached rather than its own attractor/personal best. This simple change to the update procedure in particle swarm optimization incurs minimal computational cost, and it can lead to large performance improvements in multi-modal search spaces.

Item Details

Item Type:Refereed Conference Paper
Keywords:particle swarm optimization, crowding, niching, population diversity, multi-modal search spaces
Research Division:Information and Computing Sciences
Research Group:Machine learning
Research Field:Neural networks
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the information and computing sciences
UTAS Author:Montgomery, J (Dr James Montgomery)
ID Code:91938
Year Published:2011
Web of Science® Times Cited:14
Deposited By:Information and Communication Technology
Deposited On:2014-06-03
Last Modified:2018-02-28

Repository Staff Only: item control page