eCite Digital Repository

Temporal changes in particle-associated microbial communities after interception by nonlethal sediment traps


LeCleir, GR and DeBruyn, JM and Maas, EW and Boyd, PW and Wilhelm, SW, Temporal changes in particle-associated microbial communities after interception by nonlethal sediment traps, FEMS Microbiology Ecology, 87, (1) pp. 153-163. ISSN 0168-6496 (2014) [Refereed Article]

Copyright Statement

Copyright 2013 Federation of European Microbiological Societies.

DOI: doi:10.1111/1574-6941.12213


Using marine sediment traps (named RESPIRE for REspiration of Sinking Particles In the subsuRface ocEan) designed to collect sinking particles and associated microbial communities in situ, we collected and incubated marine aggregates/particles in the southern Pacific Ocean from separate phytoplankton bloom events in situ. We determined the phylogenetic affiliation for the microorganisms growing on aggregates by pyrosequencing partial 16S rRNA gene amplicons. Water column samples were also collected and sequenced for comparison between sinking-particle-associated and planktonic bacterial communities. Statistically significant differences were found between the water column and sediment trap bacteria. Relative abundances of Pelagibacter sp. and multiple members of the Flavobacteria, Actinobacteria, and α-Proteobacteria were elevated in water column samples, while trap samples contained members of the Roseobacter clade of α-Proteobacteria in high relative abundances. Our findings indicated that rapid changes - within 24 h of collection - occurred to the microbial community associated with aggregates from either bloom type. There was a little change in the bacterial assemblage after the initial 24-h incubation period. The most abundant early colonizer was a Sulfitobacter sp. This study provides further evidence that Roseobacters are rapid colonizers of marine aggregates and that colonization can occur on short timescales. This study further demonstrates that particle origin may be insignificant regarding the heterotrophic bacterial population that degrades them.

Item Details

Item Type:Refereed Article
Keywords:DNA sequencing, marine bacteria, marine snow, sediment traps
Research Division:Earth Sciences
Research Group:Oceanography
Research Field:Biological oceanography
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the environmental sciences
UTAS Author:Boyd, PW (Professor Philip Boyd)
ID Code:91700
Year Published:2014
Web of Science® Times Cited:27
Deposited By:IMAS Research and Education Centre
Deposited On:2014-05-27
Last Modified:2017-10-31

Repository Staff Only: item control page