University of Tasmania
Browse

File(s) under permanent embargo

Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa

journal contribution
posted on 2023-05-18, 00:56 authored by McLean, EH, Prober, SM, Stock, WD, Dorothy SteaneDorothy Steane, Bradley PottsBradley Potts, Rene VaillancourtRene Vaillancourt, Byrne, M
Widespread species often occur across a range of climatic conditions, through a combination of local genetic adaptations and phenotypic plasticity. Species with greater phenotypic plasticity are likely to be better positioned to cope with rapid anthropogenic climate changes, while those displaying strong local adaptations might benefit from translocations to assist the movement of adaptive genes as the climate changes. Eucalyptus tricarpa occurs across a climatic gradient in south-eastern Australia, a region of increasing aridity, and we hypothesized that this species would display local adaptation to climate. We measured morphological and physiological traits reflecting climate responses in nine provenances from sites of 460 to 1040 mm annual rainfall, in their natural habitat and in common gardens near each end of the gradient. Local adaptation was evident in functional traits and differential growth rates in the common gardens. Some traits displayed complex combinations of plasticity and genetic divergence among provenances, including clinal variation in plasticity itself. Provenances from drier locations were more plastic in leaf thickness, whereas leaf size was more plastic in provenances from higher rainfall locations. Leaf density and stomatal physiology (as indicated by δ13C and δ18O) were highly and uniformly plastic. In addition to variation in mean trait values, genetic variation in trait plasticity may play a role in climate adaptation.

Funding

Department of Climate Change and Energy Efficiency

History

Publication title

Plant, Cell and Environment

Volume

37

Issue

6

Pagination

1440-1451

ISSN

1365-3040

Department/School

School of Natural Sciences

Publisher

Wiley-Blackwell Publishing Ltd

Place of publication

United Kingdom

Rights statement

Copyright 2013 John Wiley & Sons Ltd

Repository Status

  • Restricted

Socio-economic Objectives

Native forests

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC