eCite Digital Repository

Real-time 3D echocardiographic quantification of left atrial volume: multicenter study for validation with CMR


Mor-Avi, V and Yodwut, C and Jenkins, C and Kuhl, H and Nesser, H-J and Marwick, TH and Franke, A and Weinert, L and Niel, J and Steringer-Mascherbauer, R and Freed, BH and Sugeng, L and Lang, RM, Real-time 3D echocardiographic quantification of left atrial volume: multicenter study for validation with CMR, JACC: Cardiovascular Imaging, 5, (8) pp. 769-777. ISSN 1936-878X (2012) [Refereed Article]

Copyright Statement


DOI: doi:10.1016/j.jcmg.2012.05.011


Objectives We studied in a multicenter setting the accuracy and reproducibility of 3-dimensional echocardiography (3DE)–derived measurements of left atrial volume (LAV) using new, dedicated volumetric software, side by side with 2-dimensional echocardiography (2DE), using cardiac magnetic resonance (CMR) imaging as a reference.

Background Increased LAV is associated with adverse cardiovascular outcomes. Although LAV measurements are routinely performed using 2DE, this methodology is limited because it is view dependent and relies on geometric assumptions regarding left atrial shape. Real-time 3DE is free of these limitations and accordingly is an attractive alternative for the evaluation of LAV. However, few studies have validated 3DE-derived LAV measurements against an accepted independent reference standard, such as CMR imaging.

Methods We studied 92 patients with a wide range of LAV who underwent CMR (1.5-T) and echocardiographic imaging on the same day. Images were analyzed to obtain maximal and minimal LAV: CMR images using standard commercial tools, 2DE images using a biplane area-length technique, and 3DE images using Tomtec LA Function software. Intertechnique comparisons included linear regression and Bland-Altman analyses. Reproducibility of all 3 techniques was assessed by calculating the percentage of absolute differences in blinded repeated measurements. Kappa statistics were used to compare 2DE and 3DE classification of normal/enlarged against the CMR reference.

Results 3DE-derived LAV values showed higher correlation with CMR than 2DE measurements (r = 0.93 vs. r = 0.74 for maximal LAV; r = 0.88 vs. r = 0.82 for minimal LAV). Although 2DE underestimated maximal LAV by 31 ± 25 ml and minimal LAV by 16 ± 32 ml, 3DE resulted in a minimal bias of −1 ± 14 ml for maximal LAV and 0 ± 21 ml for minimal LAV. Interobserver and intraobserver variability of 2DE and 3DE measurements of maximal LAV were similar (7% to 12%) and approximately 2 times higher than CMR (4% to 5%). 3DE classified enlarged atria more accurately than 2DE (kappa: 0.88 vs. 0.71).

Conclusions Compared with CMR reference, 3DE-derived LAV measurements are more accurate than 2DE-based analysis, resulting in fewer patients with undetected atrial enlargement.

Item Details

Item Type:Refereed Article
Keywords:chamber quantification, 3-dimensional echocardiography, left atrium
Research Division:Biomedical and Clinical Sciences
Research Group:Cardiovascular medicine and haematology
Research Field:Cardiology (incl. cardiovascular diseases)
Objective Division:Health
Objective Group:Clinical health
Objective Field:Clinical health not elsewhere classified
UTAS Author:Marwick, TH (Professor Tom Marwick)
ID Code:91210
Year Published:2012
Web of Science® Times Cited:163
Deposited By:Menzies Institute for Medical Research
Deposited On:2014-05-12
Last Modified:2014-06-12

Repository Staff Only: item control page