eCite Digital Repository

A warmer world will reduce tree growth in evergreen broadleaf forests: evidence from Australian temperate and subtropical eucalypt forests


Bowman, DMJS and Williamson, GJ and Keenan, RJ and Prior, LD, A warmer world will reduce tree growth in evergreen broadleaf forests: evidence from Australian temperate and subtropical eucalypt forests, Global Ecology and Biogeography, 23, (8) pp. 925-934. ISSN 1466-822X (2014) [Refereed Article]


Copyright Statement

Copyright 2014 The Authors. Global Ecology and Biogeography. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

DOI: doi:10.1111/geb.12171


Aims: Understanding how tree growth is influenced by climate is vital for predicting how forests will respond to climate change, yet there have been few studies of tree growth spanning macroclimatic gradients. The aim of this study is to correlate growth of a single lineage of broadleaf evergreen trees with continental-scale variability in climate.

Location: Australia's temperate mesic eucalypt forests, spanning latitudes from 23 to 43 S and longitudes from 115 to 153 E.

Methods: We compiled and analysed a dataset containing around half a million measurements of growth in eucalypt tree diameter, collected from 2409 permanent forestry plots. These plots spanned a range of 5582105 mm mean annual precipitation and 622 C mean annual temperature. Generalized additive models were used to study the relationship between growth in tree diameter and several temperature and water availability variables.

Results: Tree growth increased with precipitation, but with a diminishing response above a mean annual precipitation of 1400 mm. There was a peaked response to temperature, with maximum growth occurring at a mean annual temperature of 11 C and maximum temperature of the warmest month of 2527 C. Lower temperatures directly constrain growth. High temperatures primarily reduced growth by reducing water availability, but they also appeared to exert a direct negative effect. Our best model, which included maximum temperature of the warmest month and the ratio of precipitation to evaporation, explained 28% of the deviance.

Main conclusions: The productivity of Australia's temperate eucalypt forests could decline substantially as the climate warms, given that 87% of these forests currently experience a mean annual temperature above 11 C, where the highest growth rates were observed. This will reduce carbon sequestration and slow recovery after catastrophic disturbances such as wildfire.

Item Details

Item Type:Refereed Article
Keywords:climatic gradients, macroecology, precipitation, temperature, tree growth, water availability
Research Division:Environmental Sciences
Research Group:Ecological applications
Research Field:Landscape ecology
Objective Division:Environmental Management
Objective Group:Fresh, ground and surface water systems and management
Objective Field:Assessment and management of freshwater ecosystems
UTAS Author:Bowman, DMJS (Professor David Bowman)
UTAS Author:Williamson, GJ (Dr Grant Williamson)
UTAS Author:Prior, LD (Dr Lynda Prior)
ID Code:90620
Year Published:2014
Web of Science® Times Cited:58
Deposited By:Plant Science
Deposited On:2014-04-15
Last Modified:2017-10-31
Downloads:398 View Download Statistics

Repository Staff Only: item control page