University of Tasmania
Browse
Bowman et al 2014.pdf (446.58 kB)

A warmer world will reduce tree growth in evergreen broadleaf forests: evidence from Australian temperate and subtropical eucalypt forests

Download (446.58 kB)
journal contribution
posted on 2023-05-17, 23:48 authored by David BowmanDavid Bowman, Grant WilliamsonGrant Williamson, Keenan, RJ, Lynda PriorLynda Prior

Aims: Understanding how tree growth is influenced by climate is vital for predicting how forests will respond to climate change, yet there have been few studies of tree growth spanning macroclimatic gradients. The aim of this study is to correlate growth of a single lineage of broadleaf evergreen trees with continental-scale variability in climate.

Location: Australia's temperate mesic eucalypt forests, spanning latitudes from 23 to 43° S and longitudes from 115 to 153° E.

Methods: We compiled and analysed a dataset containing around half a million measurements of growth in eucalypt tree diameter, collected from 2409 permanent forestry plots. These plots spanned a range of 558–2105 mm mean annual precipitation and 6–22 °C mean annual temperature. Generalized additive models were used to study the relationship between growth in tree diameter and several temperature and water availability variables.

Results: Tree growth increased with precipitation, but with a diminishing response above a mean annual precipitation of 1400 mm. There was a peaked response to temperature, with maximum growth occurring at a mean annual temperature of 11 °C and maximum temperature of the warmest month of 25–27 °C. Lower temperatures directly constrain growth. High temperatures primarily reduced growth by reducing water availability, but they also appeared to exert a direct negative effect. Our best model, which included maximum temperature of the warmest month and the ratio of precipitation to evaporation, explained 28% of the deviance.

Main conclusions: The productivity of Australia's temperate eucalypt forests could decline substantially as the climate warms, given that 87% of these forests currently experience a mean annual temperature above 11 °C, where the highest growth rates were observed. This will reduce carbon sequestration and slow recovery after catastrophic disturbances such as wildfire.

History

Publication title

Global Ecology and Biogeography

Volume

23

Issue

8

Pagination

925-934

ISSN

1466-822X

Department/School

School of Natural Sciences

Publisher

Wiley-Blackwell Publishing Ltd.

Place of publication

UK

Rights statement

Copyright 2014 The Authors. Global Ecology and Biogeography. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Repository Status

  • Open

Socio-economic Objectives

Assessment and management of freshwater ecosystems

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC