eCite Digital Repository
Effect of substituents on the preferred modes of one-electron reductive cleavage of N-Cl and N-Br bonds
Citation
O'Reilly, RJ and Karton, A and Radom, L, Effect of substituents on the preferred modes of one-electron reductive cleavage of N-Cl and N-Br bonds, The Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory, 117, (2) pp. 460-472. ISSN 1089-5639 (2013) [Refereed Article]
Copyright Statement
Copyright 2013 American Chemical Society
Abstract
In this study, we investigate the effect of substituents in determining the modes of one-electron reductive cleavage of X-NRR' (X = Cl and Br) molecules. We achieve this through comparison of the calculated gas-phase electron affinities (EAs) and aqueous-phase one-electron reduction potentials (E°'s) for a range of nitrogen-centered radicals (·NRR') with the corresponding EA and E° values for ·Cl and ·Br. The gas-phase EAs have been obtained using the benchmark-quality W1w thermochemical protocol, whereas E° values have been obtained by additionally applying free energy of solvation corrections, obtained using the conductor-like polarizable continuum (CPCM) model. We find that the N-halogenated derivatives of amines and amides should generally cleave in such a way as to afford ·NRR' and X-. For the N-halogenated imides, on the other hand, the N-brominated derivatives are predicted to produce ·Br in solution, whereas the N-chlorinated derivatives again would give Cl-. Importantly, we predict that N-bromouracil is likely to afford ·Br. This may have important implications in terms of inflammatory-related diseases, because ·Br may damage biomolecules such as proteins and DNA. To assist in the determination of the gas-phase EAs of larger ·NRR' radicals, not amenable to investigation using W1w, we have evaluated the performance of a wide range of lower-cost theoretical methods. Of the standard density functional theory (DFT) procedures, M06-2X, τ-HCTHh, and B3-LYP show good performance, with mean absolute deviations (MADs) from W1w of 4.8-6.8 kJ mol-1, whereas ROB2-PLYP and B2-PLYP emerge as the best of the double-hybrid DFTs (DHDFTs), with MADs of 2.5 and 3.0 kJ mol-1, respectively. Of the Gn-type procedures, G3X and G4 show very good performance (MADs = 2.4 and 2.6 kJ mol-1, respectively). The G4(MP2)-6X+ procedure performs comparably, with an MAD of 2.7 kJ mol-1, with the added advantage of significantly reduced computational expense.
Item Details
Item Type: | Refereed Article |
---|---|
Keywords: | radical chemistry, mechanism |
Research Division: | Chemical Sciences |
Research Group: | Organic chemistry |
Research Field: | Free radical chemistry |
Objective Division: | Manufacturing |
Objective Group: | Industrial chemicals and related products |
Objective Field: | Organic industrial chemicals (excl. resins, rubber and plastics) |
UTAS Author: | O'Reilly, RJ (Dr Robert O'Reilly) |
ID Code: | 89217 |
Year Published: | 2013 |
Web of Science® Times Cited: | 18 |
Deposited By: | Chemistry |
Deposited On: | 2014-02-26 |
Last Modified: | 2014-05-16 |
Downloads: | 0 |
Repository Staff Only: item control page