University of Tasmania
Browse

File(s) under permanent embargo

From physiology to physics: are we recognizing the flexibility of biologging tools?

journal contribution
posted on 2023-05-17, 22:22 authored by Payne, NL, Taylor, MD, Watanabe, YY, Jayson SemmensJayson Semmens
The remote measurement of data from free-ranging animals has been termed ‘biologging’ and in recent years this relatively small set of tools has been instrumental in addressing remarkably diverse questions – from ‘how will tuna respond to climate change?’ to ‘why are whales big?’. While a single biologging dataset can have the potential to test hypotheses spanning physiology, ecology, evolution and theoretical physics, explicit illustrations of this flexibility are scarce and this has arguably hindered the full realization of the power of biologging tools. Here we present a small set of examples from studies that have collected data on two parameters widespread in biologging research (depth and acceleration), but that have interpreted their data in the context of extremely diverse phenomena: from tests of biomechanical and diving-optimality models to identifications of feeding events, Lévy flight foraging strategies and expanding oxygen minimum zones. We use these examples to highlight the remarkable flexibility of biologging tools, and identify several mechanisms that may enhance the scope and dissemination of future biologging research programs.

History

Publication title

Journal of Experimental Biology

Volume

217

Pagination

317-322

ISSN

0022-0949

Department/School

Institute for Marine and Antarctic Studies

Publisher

Company Of Biologists Ltd

Place of publication

Bidder Building Cambridge Commercial Park Cowley Rd, Cambridge, England, Cambs, Cb4 4Dl

Rights statement

Copyright 2014 The Authors

Repository Status

  • Restricted

Socio-economic Objectives

Assessment and management of terrestrial ecosystems

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC