eCite Digital Repository

Nonlinear 2D analysis of the efficiency of fixed oscillating water column wave energy converters


Luo, Y and Nader, JP and Cooper, P and Zhu, SP, Nonlinear 2D analysis of the efficiency of fixed oscillating water column wave energy converters, Renewable Energy, 64 pp. 255-265. ISSN 0960-1481 (2014) [Refereed Article]

Copyright Statement

Copyright 2013 Elsevier Ltd.

DOI: doi:10.1016/j.renene.2013.11.007


This paper reports on the development of a two-dimensional, fully nonlinear Computational Fluid Dynamics (CFD) model to analyse the efficiency of fixed Oscillating Water Column (OWC) Wave Energy Conversion (WEC) devices with linear power take off systems. The model was validated against previous experimental, analytical and numerical results of others. In particular, the simulation results show excellent agreement with the analytical results obtained by Sarmento and Falc„o [1] for linear waves in a 2D channel and with previous experiments by others on the interaction between nonlinear waves and a fixed barge. Results are presented for linear waves on the influence of the seaward wall draft and thickness of the OWC device on the resonant frequency and the capture efficiency of the OWC. The key outcome of the present work is that for fully nonlinear waves a substantial decrease in the hydrodynamic capture efficiency of the OWC device was observed with increasing wave height, which represents a significant departure from the linear wave case. The optimal pneumatic damping coefficient for the OWC was also found to be dependent on the wave height. By analysing the magnitude of the first and higher order components of the incident nonlinear waves and the response of the OWC it was found that the first order capture efficiency decreases with increasing wave height, which in turn implies that the OWC hydrodynamic system is fully nonlinear and that the behaviour of an OWC in a nonlinear wave train cannot be accurately represented by the superposition of the linear response to a number of component linear waves. These results have significant implications for the design and operation of practical OWC systems.

Item Details

Item Type:Refereed Article
Keywords:Hydrodynamics; Wave energy; Nonlinear; Numerical wave tank (NWT); Oscillating water column (OWC); Efficiency
Research Division:Engineering
Research Group:Maritime engineering
Research Field:Ocean engineering
Objective Division:Energy
Objective Group:Renewable energy
Objective Field:Wave energy
UTAS Author:Nader, JP (Dr Jean-Roch Nader)
ID Code:88297
Year Published:2014
Web of Science® Times Cited:78
Deposited By:NC Maritime Engineering and Hydrodynamics
Deposited On:2014-01-24
Last Modified:2017-11-06

Repository Staff Only: item control page