University of Tasmania
Browse

File(s) under permanent embargo

Theoretical investigation into the mechanism of 3'-dGMP oxidation by [PtIVCl4(dach)]

journal contribution
posted on 2023-05-17, 21:26 authored by Alireza AriafardAlireza Ariafard, Ghohe, NM, Abbasi, KK, Allan CantyAllan Canty, Brian YatesBrian Yates
The mechanism for the oxidation of 3'-dGMP by [PtCl4(dach)] (dach = diaminocyclohexane) in the presence of [PtCl2(dach)] has been investigated using density functional theory. We find that the initial complexation, i.e., the formation of [PtCl3(dach)(3'-dGMP)], is greatly assisted by the reaction of the encounter pair [PtCl2(dach)···3'-dGMP] with [PtCl4(dach)], leading to migration of an axial chlorine ligand from platinum(IV) to platinum(II). A dinuclear platinum(II)/platinum(IV) intermediate could not be found, but the reaction is predicted to pass through a platinum(III)/platinum(III) transition structure. A cyclization process, i.e., C8-O bond formation, from [PtCl3(dach)(3'-dGMP)] occurs through an intriguing phosphate-water-assisted deprotonation reaction, analogous to the opposite of a proton shuttle mechanism. Followed by this, the guanine moiety is oxidized via dissociation of the PtIV-Clax bond, and the cyclic ether product is finally formed after deprotonation. We have provided rationalizations, including molecular orbital explanations, for the key steps in the process. Our results help to explain the effect of [PtCl4(dach)] on the complexation step and the effect of a strong hydroxide base on the cyclization reaction. The overall reaction cycle is intricate and involves autocatalysis by a platinum(II) species.

History

Publication title

Inorganic Chemistry

Volume

52

Pagination

707-717

ISSN

0020-1669

Department/School

School of Natural Sciences

Publisher

American Chemical Society

Place of publication

United States

Rights statement

Copyright 2012 American Chemical Society

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC