eCite Digital Repository

Spatiotemporal characterization of Sclerotinia crown rot epidemics in pyrethrum

Citation

Scott, JB and Gent, DH and Pethybridge, SJ and Hay, FS, Spatiotemporal characterization of Sclerotinia crown rot epidemics in pyrethrum, Plant Disease, 98, (2) pp. 267-274. ISSN 0191-2917 (2014) [Refereed Article]

Copyright Statement

Copyright 2014 The American Phytopathological Society

DOI: doi:10.1094/PDIS-07-13-0692-RE

Abstract

Sclerotinia crown rot, caused by Sclerotinia minor and S. sclerotiorum, is a disease of pyrethrum in Australia that may cause substantial decline in plant density. The spatiotemporal characteristics of the disease were quantified in 14 fields during three growing seasons. Fitting the binary power law to disease incidence provided slope (b = 1.063) and intercept (ln(Ap) = 0.669) estimates significantly (P ≤ 0.0001) greater than 1 and 0, respectively, indicating spatial aggregation at the sampling unit scale that was dependent upon disease incidence. Covariate analyses indicated that application of fungicides did not significantly influence these estimates. Spatial autocorrelation and spatial analysis by distance indices indicated that spatial aggregation above the sampling unit scale was limited to 20 and 17% of transects analyzed, respectively. The range of significant aggregation was limited primarily to neighboring sampling units only. Simple temporal disease models failed to adequately describe disease progress, due to a decline in disease incidence in spring. The relationships between disease incidence at the scales of individual plants within quadrats and quadrats within a field was modeled using four predictors of sample size. The choice of the specific incidence–incidence relationship influenced the classification of disease incidence as greater than or less than 2% of plants, a provisional commercial threshold for fungicide application. Together, these studies indicated that epidemics of Sclerotinia crown rot were dominated by small-scale aggregation of disease. Larger scale patterns of diseased plants, when present, were associated with severe disease outbreaks. The spatial and temporal analyses were suggestive of disease epidemics being associated with localized primary inoculum and other factors that favor disease development at a small scale.

Item Details

Item Type:Refereed Article
Research Division:Agricultural and Veterinary Sciences
Research Group:Horticultural Production
Research Field:Horticultural Crop Protection (Pests, Diseases and Weeds)
Objective Division:Plant Production and Plant Primary Products
Objective Group:Horticultural Crops
Objective Field:Horticultural Crops not elsewhere classified
Author:Scott, JB (Dr Jason Scott)
Author:Gent, DH (Dr David Gent)
Author:Pethybridge, SJ (Dr Sarah Pethybridge)
Author:Hay, FS (Dr Frank Hay)
ID Code:88086
Year Published:2014
Web of Science® Times Cited:1
Deposited By:Tasmanian Institute of Agriculture
Deposited On:2014-01-10
Last Modified:2017-11-02
Downloads:1 View Download Statistics

Repository Staff Only: item control page