eCite Digital Repository

Experimental and numerical studies of blade roughness and fouling on marine current turbine performance

Citation

Walker, JM and Flack, K and Lust, EE and Schultz, MP and Luznik, L, Experimental and numerical studies of blade roughness and fouling on marine current turbine performance, Renewable Energy, 66, (June 2014) pp. 257-267. ISSN 1879-0682 (2014) [Refereed Article]

Copyright Statement

Copyright 2013 Elsevier Ltd.

DOI: doi:10.1016/j.renene.2013.12.012

Abstract

The impact of blade roughness and biofouling on the performance of a two-bladed horizontal axis marine current turbine was investigated experimentally and numerically. A 0.8 m diameter rotor (1/25th scale) with a NACA 63-618 cross section was tested in a towing tank. The torque, thrust and rotational speed were measured in the range 5 < λ < 11 (λ = tip speed ratio). Three different cases were tested: clean blades, artificially fouled blades and roughened blades. The performance of the turbine was predicted using blade element momentum theory and validated using the experimental results. The lift and drag curves necessary for the numerical model were obtained by testing a 2D NACA 63-618 aerofoil in a wind tunnel under clean and roughened conditions. The numerical model predicts the trends that were observed in the experimental data for roughened blades. The artificially fouled blades did not adversely affect turbine performance, as the vast majority of the fouling sheared off. The remaining material improved the performance by delaying stall to higher angles of attack and allowing measurements at lower λ than were attainable using the clean blades. The turbine performance was adversely affected in the case of roughened blades, with the power coefficient (CP) versus λ curve significantly offset below that for the clean case. The maximum CP for this condition was 0.34, compared to 0.42 for the clean condition.

Item Details

Item Type:Refereed Article
Keywords:Tidal, Biofouling, Marine Current, Roughness, Turbine, Blade element momentum
Research Division:Engineering
Research Group:Maritime Engineering
Research Field:Ocean Engineering
Objective Division:Energy
Objective Group:Renewable Energy
Objective Field:Tidal Energy
Author:Walker, JM (Dr Jessica Walker)
ID Code:88056
Year Published:2014
Web of Science® Times Cited:10
Deposited By:NC Maritime Engineering and Hydrodynamics
Deposited On:2014-01-09
Last Modified:2017-11-06
Downloads:2 View Download Statistics

Repository Staff Only: item control page