University of Tasmania
Browse

File(s) under permanent embargo

Genetic basis of neurocognitive decline and reduced white-matter integrity in normal human brain aging

journal contribution
posted on 2023-05-17, 20:50 authored by Glahn, DC, Kent Jr, JW, Sprooten, E, Diego, VP, Winkler, AM, Curran, JE, McKay, DR, Knowles, EE, Carless, MA, Goring, HH, Dyer, TD, Olvera, RL, Fox, PT, Almasy, L, Jac CharlesworthJac Charlesworth, Kochunov, P, Duggirala, R, Blangero, J
Identification of genes associated with brain aging should markedly improve our understanding of the biological processes that govern normal age-related decline. However, challenges to identifying genes that facilitate successful brain aging are considerable, including a lack of established phenotypes and difficulties in modeling the effects of aging per se, rather than genes that influence the underlying trait. In a large cohort of randomly selected pedigrees (n = 1,129 subjects), we documented profound aging effects from young adulthood to old age (18-83 y) on neurocognitive ability and diffusion-based white-matter measures. Despite significant phenotypic correlation between white-matter integrity and tests of processing speed, working memory, declarative memory, and intelligence, no evidence for pleiotropy between these classes of phenotypes was observed. Applying an advanced quantitative gene-by-environment interaction analysis where age is treated as an environmental factor, we demonstrate a heritable basis for neurocognitive deterioration as a function of age. Furthermore, by decomposing gene-by-aging (G × A) interactions, we infer that different genes influence some neurocognitive traits as a function of age, whereas other neurocognitive traits are influenced by the same genes, but to differential levels, from young adulthood to old age. In contrast, increasing white-matter incoherence with age appears to be nongenetic. These results clearly demonstrate that traits sensitive to the genetic influences on brain aging can be identified, a critical first step in delineating the biological mechanisms of successful aging.

History

Publication title

Proceedings of the National Academy of Sciences of The United States of America

Volume

110

Issue

47

Pagination

19006-19011

ISSN

0027-8424

Department/School

Menzies Institute for Medical Research

Publisher

Natl Acad Sciences

Place of publication

2101 Constitution Ave Nw, Washington, USA, Dc, 20418

Rights statement

Copyright 2013 PNAS

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC