University of Tasmania
Browse

File(s) under permanent embargo

Composition and Evolution of the Melts Erupted in 1996 at Karymskoe Lake, Eastern Kamchatka: Evidence from Inclusions in Minerals

journal contribution
posted on 2023-05-17, 20:28 authored by Portnyagin, MV, Naumov, VB, Mironov, NL, Ivan BelousovIvan Belousov, Kononkova, NN
The powerful eruption in the Akademii Nauk caldera on January 2, 1996, marked a new activity phase of Karymsky volcano and became a noticeable event in the history of modern volcanism in Kamchatka. The paper reports data obtained by studying more than 200 glassy melt inclusions in phenocrysts of olivine (Fo82-72), plagioclase (An92-73), and clinopyroxene (Mg# 83-70) in basalts of the 1996 eruption. The data were utilized to estimate the composition of the parental melt and the physicochemical parameters of the magma evolution. According to our data, the parental melt corresponded to low magnesian, highly aluminous basalt (SiO2 = 50.2 wt %, MgO = 5.6 wt %, Al2O3 = 17 wt %) of the mildly potassic type (K2O = 0.56 wt %) and contained much dissolved volatile components (H2O = 2.8 wt %, S = 0.17 wt %, and Cl = 0.11 wt %). Melt inclusions in the minerals are similar in chemical composition, a fact testifying that the minerals crystallized simultaneously with one another. Their crystallization started at a pressure of approximately 1.5 kbar, proceeded within a narrow temperature range of 1040 +/- 20 degrees C, and continued until a near-surface pressure of approximately 100 bar was reached. The degree of crystallization of the parental melt during its eruption was close to 55%. Massive crystallization was triggered by H2O degassing under a pressure of less than 1 kbar. Magma degassing in an open system resulted in the escape of 82% H2O, 93% S, and 24% Cl (of their initial contents in the parental melt) to the fluid phase. The release of volatile compounds to the atmosphere during the eruption that lasted for 18 h was estimated at 1.7 x 10(6) t H2O, 1.4 x 10(5) t S, and 1.5 x 10(4) t Cl. The concen-trations of most incompatible trace elements in the melt inclusions are close to those in the rocks and to the expected fractional differentiation trend. Melt inclusions in the plagioclase were found to be selectively enriched in Li. The Li-enriched plagioclase with melt inclusions thought to originate from cumulate layers in the feeding system beneath Karymsky volcano, in which plagioclase interacted with Li-rich melts/ brines and was subsequently entrapped and entrained by the magma during the 1996 eruption.

History

Publication title

Geochemistry International

Volume

49

Issue

11

Pagination

1085-1110

ISSN

0016-7029

Department/School

School of Natural Sciences

Publisher

MAIK NAUKA/INTERPERIODICA/SPRINGER

Place of publication

NEW YORK

Rights statement

Copyright 2011 Pleiades Publishing, Ltd

Repository Status

  • Restricted

Socio-economic Objectives

Mineral exploration not elsewhere classified

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC