eCite Digital Repository

Transcriptomics of cortical gray matter thickness decline during normal aging

Citation

Kochunov, P and Charlesworth, J and Winkler, A and Hong, LE and Nichols, TE and Curran, JE and Sprooten, E and Jahanshad, N and Thompson, PM and Johnson, MP and Kent Jr, JW and Landman, BA and Mitchell, B and Cole, SA and Dyer, TD and Moses, EK and Goring, HHH and Almasy, L and Duggirala, R and Olvera, RL and Glahn, DC and Blangero, J, Transcriptomics of cortical gray matter thickness decline during normal aging, Neuroimage, 82 pp. 273-283. ISSN 1053-8119 (2013) [Refereed Article]

Copyright Statement

Copyright 2013 Elsevier

DOI: doi:10.1016/j.neuroimage.2013.05.066

Abstract

INTRODUCTION: We performed a whole-transcriptome correlation analysis, followed by the pathway enrichment and testing of innate immune response pathway analyses to evaluate the hypothesis that transcriptional activity can predict cortical gray matter thickness (GMT) variability during normal cerebral aging. METHODS: Transcriptome and GMT data were available for 379 individuals (age range=28-85) community-dwelling members of large extended Mexican American families. Collection of transcriptome data preceded that of neuroimaging data by 17years. Genome-wide gene transcriptome data consisted of 20,413 heritable lymphocytes-based transcripts. GMT measurements were performed from high-resolution (isotropic 800ým) T1-weighted MRI. Transcriptome-wide and pathway enrichment analysis was used to classify genes correlated with GMT. Transcripts for sixty genes from seven innate immune pathways were tested as specific predictors of GMT variability. RESULTS: Transcripts for eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3, and HN1) passed the transcriptome-wide significance threshold. Four orthogonal factors extracted from this set predicted 31.9% of the variability in the whole-brain and between 23.4 and 35% of regional GMT measurements. Pathway enrichment analysis identified six functional categories including cellular proliferation, aggregation, differentiation, viral infection, and metabolism. The integrin signaling pathway was significantly (p<10-6) enriched with GMT. Finally, three innate immune pathways (complement signaling, toll-receptors and scavenger and immunoglobulins) were significantly associated with GMT. CONCLUSION: Expression activity for the genes that regulate cellular proliferation, adhesion, differentiation and inflammation can explain a significant proportion of individual variability in cortical GMT. Our findings suggest that normal cerebral aging is the product of a progressive decline in regenerative capacity and increased neuroinflammation.

Item Details

Item Type:Refereed Article
Keywords:Transcriptomics, genetics, genomics, gray matter, brain, aging
Research Division:Biological Sciences
Research Group:Genetics
Research Field:Neurogenetics
Objective Division:Health
Objective Group:Clinical Health (Organs, Diseases and Abnormal Conditions)
Objective Field:Neurodegenerative Disorders Related to Ageing
Author:Charlesworth, J (Dr Jac Charlesworth)
ID Code:85450
Year Published:2013
Web of Science® Times Cited:8
Deposited By:Menzies Institute for Medical Research
Deposited On:2013-07-09
Last Modified:2014-06-05
Downloads:0

Repository Staff Only: item control page