eCite Digital Repository

The breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model


Gibbons, AD and Whittaker, JM and Muller, RD, The breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model, Journal of Geophysical Research: Solid Earth, 118, (3) pp. 808-822. ISSN 2169-9313 (2013) [Refereed Article]

Copyright Statement

Copyright 2013 American Geophysical Union

DOI: doi:10.1002/jgrb.50079


Published models for the Cretaceous sea!oor-spreading history of East Gondwana result in unlikely tectonic scenarios for at least one of the plate boundaries involved and/or violate particular constraints from at least one of the associated ocean basins. We link East Gondwana spreading corridors by integrating magnetic and gravity anomaly data from the Enderby Basin off East Antarctica within a regional plate kinematic framework to identify a conjugate series of east-west-trending magnetic anomalies, M4 to M0 (~126.7–120.4 Ma). The mid-ocean ridge that separated Greater India from Australia-Antarctica propagated from north to south, starting at ~136Ma northwest of Australia, and reached the southern tip of India at ~126 Ma. Sea!oor spreading in the Enderby Basin was abandoned at ~115 Ma, when a ridge jump transferred the Elan Bank and South Kerguelen Plateau to the Antarctic plate. Our revised plate kinematic model helps resolve the problem of successive two-way strike-slip motion between Madagascar and India seen in many previously published reconstructions and also suggests that sea!oor spreading between them progressed from south to north from 94 to 84 Ma. This timing is essential for tectonic !ow lines to match the curved fracture zones of the Wharton and Enderby basins, as Greater India gradually began to unzip from Madagascar from ~100 Ma. In our model, the 85-East Ridge and Kerguelen Fracture Zone formed as conjugate !anks of a "leaky" transform fault following the ~100Ma spreading reorganization. Our model also identi"es the Afanasy Nikitin Seamounts as products of the Conrad Rise hotspot.

Item Details

Item Type:Refereed Article
Keywords:Indian Ocean, plate tectonics
Research Division:Earth Sciences
Research Group:Geology
Research Field:Marine geoscience
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the earth sciences
UTAS Author:Whittaker, JM (Associate Professor Jo Whittaker)
ID Code:84430
Year Published:2013
Web of Science® Times Cited:161
Deposited By:IMAS Research and Education Centre
Deposited On:2013-05-14
Last Modified:2017-11-02

Repository Staff Only: item control page